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Introduction
Memory permits an organism to bridge the past with the
present, providing information about prior encounters
with a stimulus or context that can serve to build predictive
models for the present. At the neurobiologic level, it is well
established that the hippocampus and surrounding medial
temporal lobe (MTL) cortices play an essential role in
declarative memory (ie, long-term memory for general
facts and specific events) [1–5]. The MTL memory circuit is
composed of multiple structures, including the hippocam-
pal formation and the surrounding entorhinal, perirhinal,
and parahippocampal cortices. The hippocampal forma-
tion is further composed of the dentate gyrus, the fields of
the cornu Ammonis (CA), and subiculum. Recent investi-
gations of MTL processing have sought to characterize
the mnemonic function of specific MTL substructures.
Hypotheses regarding functional segregation within the
MTL have largely focused on the hierarchical connectivity
of the region, emphasizing potential functional differences
between the hippocampus and surrounding cortices [6–8].
Recent studies have also explored potential functional dis-
tinctions between substructures within the hippocampus,
such as CA3 and subiculum [7–10].

Hypotheses regarding the functions of MTL substruc-
tures draw heavily on knowledge of the anatomic connec-
tivity of the region with structures in neocortex, as well as
information about the intrinsic connectivity within MTL.
Such anatomically guided hypotheses may prove particu-
larly insightful when investigating disease processes that
affect MTL. Schizophrenia is associated with memory

impairments together with abnormalities in specific
hippocampal substructures [11–14]. In particular, schizo-
phrenic patients are impaired on declarative memory
tasks [13,15], and functional neuroimaging studies have
begun to reveal correlated hippocampal abnormalities.
The present commentary reviews recent functional neuro-
imaging data regarding MTL function in the healthy brain
and in schizophrenia. These initial observations are
placed within the context of knowledge about projections
to and within the MTL circuit, as anatomically informed
models are likely to facilitate understanding of disease-
related MTL dysfunction, potentially pointing to new
avenues for intervention.

Medial Temporal Lobe Anatomy
Cortical projections to and within the medial 
temporal lobe
Connections between hippocampus and entorhinal, per-
irhinal, and parahippocampal cortices are hierarchically
organized [16]. Perirhinal cortex and parahippocampal
cortex receive input from unimodal and polymodal associ-
ation cortices in the lateral temporal, frontal, and parietal
lobes by way of distinct pathways [17–21]. In infrahuman
primates, the predominant inputs to perirhinal cortex
come from unimodal visual association areas in the adja-
cent inferior temporal cortex, a region important for visual
object processing [18]. In contrast, parahippocampal cor-
tex receives its predominant input from posterior visual
association areas and posterior parietal cortex, whose func-
tions are more visuospatial in nature. Parahippocampal
cortex also receives inputs from unimodal auditory associ-
ation cortex in the superior temporal gyrus [18,19].

Perirhinal and parahippocampal cortices provide the
major inputs to the second level of the MTL hierarchy
(ie, entorhinal cortex), which also receives limited infor-
mation from polymodal association areas [22]. The topo-
graphic organization of connections between these regions
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and entorhinal cortex is distinct. Perirhinal cortex projects
primarily to the anterior two thirds of entorhinal cortex,
whereas parahippocampal cortical projections terminate
primarily in the posterior third [23]. Parahippocampal
connectivity with entorhinal cortex has a further topo-
graphic dimension—medial regions of parahippocampal
cortex project to medial posterior entorhinal cortex, and
lateral parahippocampal regions project to lateral posterior
entorhinal cortex. Collectively, this pattern of connectivity
suggests that the segregation of different neocortical inputs
to perirhinal and parahippocampal cortices might be pre-
served within entorhinal cortex.

The entorhinal cortex provides the major inputs to hip-
pocampus at the apex of the MTL hierarchy [20,24–27].
Information processed by hippocampus then descends back
down the hierarchy through reciprocal connections and is
distributed to neocortex through feedback projections. The
higher-order memory representations formed by the struc-
tures of MTL thus have the capability of binding together
information processed in multiple neocortical regions [16].

Hippocampal circuitry
Entorhinal cortex projects its output to the granule cells of
the dentate gyrus by way of the polysynaptic (trisynaptic)
pathway [16,28]. These dentate gyrus granule cells project
to the CA3 region of hippocampus through the mossy fiber
pathway. In turn, projections from the CA3 pyramidal cells
include collaterals to other CA3 pyramidal cells compris-
ing an extensive system of associational connections
within the region. Projections from CA3 also include the
Schaffer collaterals, which constitute the major projection
to the CA1 pyramidal cells. CA1 also receives input from
entorhinal cortex as part of the direct (monosynaptic)
pathway [28,29]. CA1 then projects both to the subiculum
and to entorhinal cortex. Unlike the CA3 field, there are
few associational connections within CA1 [16].

It is noteworthy that, as with cortical projections to
entorhinal cortex, projections from entorhinal cortex to
hippocampus are topographically organized [26,27,29].
Lateral entorhinal cortex projects preferentially to posterior
dentate gyrus, whereas medial entorhinal cortex projects to
anterior dentate gyrus. Different anterior-posterior levels of
entorhinal cortex also project to different proximal and
distal regions of CA1 and subiculum. Given the topo-
graphic organization of inputs to entorhinal cortex from
perirhinal and parahippocampal cortices, processing in
different regions of dentate gyrus, CA fields, and subicu-
lum may be influenced differentially by information from
perirhinal and parahippocampal cortices [23]. Parahippo-
campal cortex, which projects more medially than perirhi-
nal cortex [23], may influence more anterior regions of
dentate gyrus. In addition, perirhinal and parahippocam-
pal cortices terminate at different anterior-posterior levels
of entorhinal cortex, suggesting a possible difference in the
distribution of input from these regions to CA1 and subic-
ulum [23]. These anterior-posterior projection characteris-

tics may prove relevant to understanding MTL dysfunction
in schizophrenia, as initial data suggest a differential
disease related change in anterior MTL.

Medial Temporal Lobe Contributions to 
Declarative Memory
The anatomic organization of MTL suggests that component
regions of the circuit may differentially mediate the acquisi-
tion, retention, and recollection of specific classes of stimuli
as well as different types of memory representations. Perirhi-
nal and parahippocampal cortices may encode different
types of stimuli given that their differential cortical inputs
allow for a distinctive pattern of sensory and conceptual con-
vergence and integration. Moreover, the hierarchical organi-
zation of the MTL region highlights potential functional
segregation between the hippocampus and surrounding MTL
cortices. The hippocampus, at the apex of the MTL hierarchy,
may combine and extend the representations in MTL corti-
ces, creating conjunctive representations that integrate multi-
ple sources of cortical information, the type of knowledge
necessary for declarative memory [1,2,5].

Conjunctive representations separately code the ele-
ments of an event, maintaining the compositionality of
elemental representations and organizing them in terms
of their relations to one another [30]. The elemental nature
of such conjunctions allows for reactivation of the extended
representation from partial input, a process termed pattern
completion [8]. It has been hypothesized that hippo-
campus, in particular, has the ability to rapidly form con-
junctive representations in one trial, whereas MTL cortex
requires multiple exposures to abstract the statistical co-
occurrences of elements [7,8]. It has been suggested that
MTL cortex may be limited in its ability to form conjunctive
representations, partially because perirhinal and parahippo-
campal cortices only have access to specific types of
information from neocortical regions. Though controversial
[31–35], several convergent findings have supported this
hypothesis, including lesion and electrophysiologic data
from nonhumans [1,6], and neuropsychological [36–39]
and neuroimaging data from humans [40–46].

Given the architecture of the intra-hippocampal sub-
fields, attention has focused on CA3, and its interactions
with entorhinal cortex and CA1, in mediating conjunctive
processes. A leading hypothesis is that CA3 mechanisms are
central to the formation of conjunctive memories that link
event elements, as well as to subsequent pattern completion
that constitutes retrieval of these representations [8,47,48].
Encoding of conjunctive representations may critically
depend on the widespread collateral connections within
CA3, comprising a powerful associative learning mechanism
that allows for the binding of co-occurring event inputs dis-
tributed to multiple CA3 neurons. Supportive evidence
comes from studies of CA3-NR1 knockout mice that demon-
strate impaired spatial learning on tasks that require the
rapid acquisition of conjunctive information [49].
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Conjunctive representations may permit recollection at
retrieval through pattern completion mechanisms that
result in retrieval of an extended representation from
partial input. Pattern completion may critically depend on
mechanisms in CA3, CA1, and subiculum, and on their
interactions. For example, CA3-NR1 knockout mice
demonstrate impaired retrieval when cued by a partial set
of inputs, as evidenced by a failure to reactivate encoding
patterns in CA1 [50]. This finding highlights the putative
importance of CA3 in pattern completion, raising interest
in the status of CA3 function in populations with
expressed declarative memory deficits, such as patients
with schizophrenia.

Neuroimaging of Medial Temporal Lobe 
Function in Declarative Memory
A prerequisite to considering the relation between schizo-
phrenia and dysfunction in MTL substructures is an under-
standing of the mnemonic contributions of the distinct
substructures in the healthy human brain. One source of
evidence comes from recent neuroimaging studies using
functional magnetic resonance imaging (MRI) that have
examined the degree to which the distinct subregions of
human hippocampus and the surrounding MTL cortices
differentially support particular aspects of declarative
memory [40–46]. To date, the majority of such studies
have focused on putative functional dissociations between
hippocampus and MTL cortex, with initial data demon-
strating a correlation between hippocampal mechanisms
and the building of conjunctive representations. For exam-
ple, greater hippocampal activation during encoding corre-
lates with a higher probability of successful recollection
(and thus presumably pattern completion) at retrieval,
whereas encoding activation in MTL cortices correlates
with later successful item recognition regardless of recol-
lection outcome [41,42,45].

Complementing these encoding findings, emerging
evidence suggests that MTL cortex demonstrates a particu-
lar sensitivity to item familiarity (or conversely item nov-
elty) at retrieval. An initial meta-analysis of four functional
MRI studies revealed reductions in activation in anterior
MTL cortex during the processing of repeated items
compared with novel items, with these reductions failing
to track behavioral expressions of source recollection
(presumably mediated through pattern completion) [44].
Related findings also suggest the possibility that when
items are re-experienced, activation in MTL cortex is
reduced relative to the first encounter, and that this reduc-
tion can serve as a basis for discriminating between novel
and familiar stimuli [6,51]. Consistent with this hypothe-
sis, a recent direct test of this possibility demonstrated that
the magnitude of experience-dependent activation reduc-
tions in both perirhinal and parahippocampal cortices
tracks subjective reports of perceived item familiarity, with
the timing of these effects emerging within the first 200 ms

of stimulus processing [52]. Moreover, new data indicate
that repetition reductions in perirhinal cortex are sensitive
to repetition of conceptual stimulus properties, whereas
such reductions in parahippocampal cortex are sensitive to
repetition of perceptual stimulus properties [53], a pattern
that may stem from the different sources of cortical projec-
tions to perirhinal and parahippocampal cortices.

The hypothesized role of the hippocampus in pattern
completion at retrieval has also received support from recent
functional MRI studies. For example, Eldridge et al. [43]
observed that increased hippocampal activation during
episodic retrieval is associated with conscious recollection of
remembering the learning episode. By contrast, in their
study, hippocampal activation did not increase for items
recognized on the basis of familiarity or for unrecognized
items, suggesting a selective role in reactivating conjunctive
representations. In related studies, hippocampal activation
was associated with trials on which subjects correctly recol-
lected contextual information relative to those trials on
which contextual recollection failed [40,54].

Further evidence for the role of the hippocampus in the
retrieval of conjunctive (or relational) information comes
from studies of transitive inference tasks [55,56]. Transitive
inference tasks are designed to test the hypothesis that
linked episodes produce representations of a higher-order
memory space that store knowledge about the relations
between the episodes [1,2]. From the relational perspec-
tive, such knowledge allows memory to serve as a basis for
inferential judgments that require the flexible bridging
across episodes. Transitive inference tasks generally involve
an initial learning phase of explicit instruction about asso-
ciations between items presented in pairs, followed by a
critical test asking participants to infer the relationship
between items that are related only indirectly through their
shared association with one or more intervening items.
Two neuroimaging studies examining MTL contributions
during such inference tasks demonstrated activation in
anterior hippocampus that was uniquely associated with
transitive judgments relative to control conditions [57,58].
Importantly, schizophrenic patients demonstrate impaired
performance on similar transitive inference tasks [13,15],
raising the possibility that such impairments stem from
disruption of hippocampal mechanisms that support the
formation and retrieval of conjunctive information.

Recent high-resolution functional MRI data suggest
that the acquisition and retrieval of conjunctive informa-
tion may differentially depend on mechanisms in specific
hippocampal subregions [10,59]. These newly developed
high-resolution functional MRI techniques allow for the
differentiation of signal arising from specific subregions
within the hippocampus, as well as more precise specifica-
tion of response localization in MTL cortex. Data emerging
from such high-resolution studies suggest differential
contributions of dentate gyrus/CA2-CA3 to associative
encoding and of subiculum to associative retrieval [10].
Because these techniques allow for investigation of how
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substructures of the hippocampus support conjunctive
memory processing, a promising direction is their applica-
tion to questions regarding how the function of specific
substructures may be affected in schizophrenia.

Declarative Memory and Medial Temporal 
Lobe Status in Schizophrenia
Cognitive deficits
Psychosis (hallucinations, delusions, thought disorder) is
the prominent, but not the only, symptom set in schizo-
phrenia [60–62]. Two other symptom domains are often
described: cognitive deficits (memory, attention, and execu-
tive  dysfunction) [63,64] and affective changes (negative
symptoms) [65,66]. Importantly, it is the cognitive dysfunc-
tion of schizophrenia that is associated with poor psycho-
social function in the illness [67], thus identifying cognitive
improvement as vital for illness recovery.

Within the cognitive domain, deficits in attention,
vigilance, and working memory are often accompanied by
impairments in declarative memory [64,68–72]. For exam-
ple, persons with schizophrenia take longer to encode a
stimulus than do healthy control subjects, although they
can eventually achieve normal levels of memory perfor-
mance with multiple study exposures [15,73] (Tamminga,
Unpublished data). Similarly, the capacity to build associa-
tions and abstractions is impaired in individuals with the
disease [15,68], including deficits in making transitive
inference decisions [13,15]. Moreover, some unaffected
first-degree relatives of schizophrenia probands demon-
strate many of these same cognitive deficits [67]. Specifi-
cally, measures of declarative memory, auditory attention,
and abstraction differentiate relatives of schizophrenic
probands from healthy control subjects [74]. Whether
these cognitive abnormalities are all correlates of a single
primary neuropathology or whether they each have their
own distinct mechanisms is not yet known. However, given
that approaches to the study of MTL-dependent memory
are fairly advanced, the possibility of addressing altered
hippocampally mediated memory mechanisms in schizo-
phrenia may be particularly timely.

Medial temporal lobe status in schizophrenia
Clues about schizophrenia pathology have emerged from
the postmortem literature, with data indicating that the
hippocampus, prefrontal cortex, and dorsal thalamus are
particularly affected in persons with the illness [75].
Within hippocampus, CA1 is relatively spared, whereas
neuropathologic features associated with schizophrenia
are concentrated in CA3/4 [11]. Changes in synaptic pro-
teins [12], glutamate receptors [76], glutamate receptor
subunit expression [77], and gamma-aminobutyric acid
receptors [78] associated with schizophrenia have all been
observed in CA3/4. Localization of neuropathology pre-
dominately in CA3/4 in schizophrenia is particularly
intriguing given that, as mentioned, deletion of the NR1

subunit of N-methyl-D-aspartate (NMDA) receptors in
CA3 in genetically manipulated mice (a subunit critical for
NMDA-R function) results in a deficit in spatial conjunc-
tive memory in the animals [49,50]. Such a defect is
consistent with the behavioral expression of conjunctive
memory failures in schizophrenia [15].

Given that CA3 has dense, recurrent excitatory projec-
tions that may support the building and reactivation of
conjunctive representations [8], disruptions in CA3 func-
tion in schizophrenia could lead to impairments in declar-
ative memory tasks that require the use of conjunctive
representations. Impaired CA3 function could prevent
both the rapid acquisition of conjunctive information and
subsequent pattern completion that allows for retrieval of
conjunctive information from partial cues, both of which
are thought to rely on CA3 [9,49,50] and CA3 interactions
with other hippocampal substructures. Dysfunction in
CA3 processing may propagate forward to CA1 and back-
ward to entorhinal cortex, leading to extended functional
impairments within the MTL memory circuit and beyond.
Evidence from in vivo imaging in schizophrenic patients
provides tentative support for this hypothesis, demonstrat-
ing that hippocampal efferent connections to anterior
cingulate cortex and prefrontal cortex are functionally dis-
connected during performance on some cognitive tasks
[14]. Thus, some of the broader disturbances in cognitive
function associated with schizophrenia, including
impaired performance on tasks that focus on abstraction
or associative memory processing, may result from this
suggested disruption in CA3 processing.

Neuroimaging of Medial Temporal Lobe 
in Schizophrenia
Structural neuroimaging
In vivo hippocampal volume is reduced bilaterally in
schizophrenia, especially in anterior areas [79–82]. This
reduction in size is seen as early as the first psychotic
episode [83,84]. It has been detected to a lesser degree in
nonpsychotic siblings of schizophrenia probands [85] and
in persons at risk for schizophrenia [86,87]. Moreover,
studies of hippocampal shape have suggested regional
abnormalities of contour in individuals with schizophre-
nia [88] and in nonaffected siblings of schizophrenic
probands [85]. Importantly, these regional-shape abnor-
malities occur predominantly in the head of the hippo-
campus, implicating the anterior subregion within
hippocampus as abnormal [89]. To the extent that shape
abnormalities reflect pathology in underlying tissue, these
data further support the presence of alteration in hippo-
campus associated with the illness.

Functional neuroimaging
Neuroimaging studies have begun to characterize alter-
ations in metabolism and functional activity within the
MTL region in schizophrenic patients. Initial positron
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emission tomography (PET) studies measuring regional
cerebral glucose metabolic rates (rCMRglc) during rest
demonstrated differences in hippocampal rCMRglc in
schizophrenic patients relative to healthy control subjects
[90–94]. Some studies revealed decreased hippocampal
rCMRglc in schizophrenic patients relative to control sub-
jects [90–92], whereas others observed increased rCMRglc
in patients with negative symptoms in addition to those
with severe hallucinations and delusions [93,94].

Along similar lines, PET studies using measures of
regional cerebral blood flow (rCBF) have demonstrated
rCBF increases in MTL in schizophrenic patients [95–98],
with rCBF during rest being correlated with clinical symp-
toms. For example, increased rCBF in left MTL in schizo-
phrenia was associated with more severe psychopathology
[95] or with more positive symptoms, such as hallucina-
tions and delusions [98]. Moreover, increased hippo-
campal activation has been observed when schizophrenic
patients experience auditory hallucinations using both PET
and functional MRI [99–101]. Together, these studies docu-
ment abnormal hippocampal function in schizophrenia
during periods of rest that is associated with the psycho-
pathology of the disease.

Initial PET studies have also documented alterations in
hippocampal activation while schizophrenic patients per-
formed declarative memory tasks. Increases in hippocampal
rCBF in schizophrenic patients relative to healthy control
subjects were observed during an auditory recognition task
[14], though differences in hippocampal activation in
schizophrenic patients were not limited to the recognition
conditions but were also observed in the rest and control
conditions, suggesting a general elevation in hippocampal
rCBF in schizophrenia. Atypical hippocampal activation in
schizophrenia has also been observed when declarative
memory retrieval was elicited by requiring the recall of pre-
viously studied words [13,102,103]. Across-group compari-
sons revealed that hippocampal activation in schizophrenic
patients was elevated relative to the healthy control group
during both recall and baseline conditions. However,
within-group comparisons revealed no difference in hippo-
campal activation between recall and baseline blocks within
the schizophrenic group, whereas a robust difference in
hippocampal activation between recall and baseline condi-
tions was observed within the healthy control group. This
failure to recruit MTL regions during recall (no differentia-
tion in hippocampal activation between recall and baseline)
was accompanied by impaired performance on the memory
task in the schizophrenic patients [13,103]. Although
important initial observations, these studies lacked suffi-
cient resolution (both spatial and temporal) to generate
precise information about the localization of activations
within subregions of MTL.

Functional MRI studies, which offer better spatial and
temporal resolution than PET, have demonstrated abnormal
patterns of MTL activation in schizophrenia during both
memory encoding and retrieval. In a block-design functional

MRI study, schizophrenic patients and healthy control
subjects performed a picture-encoding task on both novel
and familiar stimuli [104]. Despite intact subsequent recog-
nition memory performance for the presented pictures,
schizophrenic patients demonstrated abnormal encoding-
related activation in the hippocampus and parahippocampal
gyrus relative to healthy control subjects. Specifically,
whereas healthy subjects demonstrated greater MTL activa-
tion for novel relative to repeated stimuli, patients with
schizophrenia demonstrated the opposite pattern of
response [104]. In a related functional MRI study of novel
face encoding, schizophrenic patients showed reduced
hippocampal activations relative to healthy control subjects,
even though later recognition was comparable across groups
[105]. When encoding activation during novel picture learn-
ing was sorted by later memory performance [106–108],
schizophrenic patients demonstrated different patterns of
MTL activation than healthy control subjects, even though
recognition performance was equivalent [109].

Investigations of hippocampal activity during memory
retrieval have also revealed altered patterns of hippocam-
pal activation in schizophrenia [110,111]. For example, dur-
ing recognition memory for previously presented words,
reduced hippocampal activation was observed in patients
relative to healthy control subjects during the evaluation of
novel foil items at the time of retrieval [110]. Although
both schizophrenic patients and healthy control subjects
demonstrated above-baseline hippocampal activation dur-
ing presentation of old and new items, only in healthy
control subjects did hippocampal activation differentiate
between old and new items. Strikingly, the schizophrenic
patients performed worse on the recognition memory task
relative to control subjects due to a high false-alarm rate,
suggesting that the failure of hippocampal activation to
differentiate new items from those previously experienced
underlies the patients’ memory deficits. Jessen et al. [111]
also observed differences in recognition memory perfor-
mance in schizophrenia that were associated with reduced
activation in the left anterior hippocampus during success-
ful encoding and reduced hippocampal activation bilater-
ally at retrieval relative to healthy control subjects [111].

An electrophysiologic study measuring event-related
potentials also observed important differences in brain
responses during memory retrieval between schizophrenic
patients and healthy control subjects [112]. Using the
remember/know procedure, in which subjects are required
to judge whether recognition was associated with a recol-
lective experience (“remember”) or a feeling of familiarity
(“know”), schizophrenic patients had fewer “remember”
and more “know” responses than healthy control subjects.
In addition, the timing of responses over temporo-parietal
sites for “remember” items relative to “new” items was dif-
ferent for schizophrenic patients relative to healthy control
subjects, with patients demonstrating a shorter time course
of activity. These results are especially intriguing given find-
ings in healthy adults that memory accompanied by con-
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scious recollection of contextual details is associated with
increased activation in hippocampus [40,43]. The relative
lack of “remember” responses in schizophrenia patients
may reflect disruption in hippocampal processing, which
leads to differences in the timing of neural responses as
observed with event-related potentials.

Taken together, functional imaging studies in schizo-
phrenic patients provide evidence for abnormal hippo-
campal function in the disease that is often associated with
impaired declarative memory performance. However,
changes in activity in hippocampal regions can appear
even when memory performance is apparently intact
[104,109]. This variable pattern indicates that although
functional imaging in schizophrenia has advanced our
understanding of how changes in structure relate to
specific changes in memory function, important questions
remain. In light of converging evidence from animal and
human studies implicating specific MTL subregions in
distinct aspects of declarative memory function, the
variable imaging outcomes in schizophrenia may reflect
the presence of functional abnormalities in specific
hippocampal subregions, with other subregions remaining
functionally intact. Future studies using recently developed
high-resolution functional MRI methods are likely to
provide insight into these questions.

Conclusions
Anatomically guided models of MTL function may fruit-
fully guide future explorations of the neuro- and psycho-
pathology-associated with schizophrenia. The presence of
declarative memory impairments and correlated abnor-
malities in hippocampal function as revealed by functional
neuroimaging suggest a clear role for the hippocampus
and surrounding MTL structures in the pathology of
schizophrenia. Further evidence from structural neuro-
imaging that the CA3 region of the hippocampus may be
particularly affected in the disease suggests that the declar-
ative memory impairments observed in schizophrenia
arise from impairments in conjunctive processing, which is
hypothesized to rely on the CA3 region and its interactions
with other hippocampal regions. High-resolution func-
tional MRI techniques that allow differentiation between
hippocampal subfields provide new means to directly
investigate disruptions in CA3 function that may be associ-
ated with observed structural abnormalities in schizophre-
nia. The ability to observe and characterize CA3 function,
and MTL function more broadly, in schizophrenia prom-
ises to advance understanding of how declarative memory
in general, and conjunctive processing in particular, are
affected in the disease and may provide insight into possi-
ble treatment interventions.
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