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0. Introduction

We were asked for the 50th anniversary issue of Vision Research
to highlight new knowledge on important questions open 25 years
ago and on which progress had (or had not) been made. In a happy
coincidence for me, 25 years ago I had just completed the draft of a
book (published as Graham, 1989, summarized in a short paper
Graham, 1992). I am reasonably certain, therefore, of what was
known 25 years ago about a set of questions in pattern vision, or
at least of what I thought was known.

The simple multiple-analyzers model shown in Fig. 1 top panel
seemed at that time to be a very good model of pattern vision, par-
ticularly when you limited your attention to experiments using vi-
sual patterns of near-threshold contrast. In this model there were
multiple analyzers, each of which was selectively sensitive on at
least one of the multiple dimensions of pattern vision. These
dimensions included spatial frequency, spatial position, orienta-
tion, direction of motion, and a number of others. To get from these
multiple analyzers to the observer’s response the model used a
decision rule that was just a very simple combination of the multi-
ple analyzers’ outputs, e.g.: the observer says the pattern is vertical
if and only if the analyzer producing the biggest output is the ana-
lyzer having peak sensitivity at the vertical orientation.
-NC-ND license.
An aside about terms and the glossary: Many terms used in the
main text without much definition are described more fully in the
glossary. These terms appear in italics at least when they are first
introduced. (Some italicized terms are not in the glossary but are
italicized for momentary emphasis, or because they are titles of
other sections in this review, or for other conventional reasons.)

The physiological substrate for an analyzer might be considered
to be either a single neuron, or a set of neurons that are homoge-
neous in some sense (e.g. all sensitive to vertical orientation but
in different spatial positions). To minimize blatantly neurophysio-
logical terms when talking about concepts used to explain behav-
ior, the word unit will be used here to mean a more abstract entity
analogous to a single neuron, and the word channel will be used
here to mean a more abstract entity analogous to a set of neurons
that are homogeneous in some sense. The word receptive field,
although it has its origin in the neurophysiological literature, is less
blatantly neural, and both units/channels and neuron/neurons will
be said to have receptive fields.

Twenty-five years ago the analyzers were generally based on
the classical model of one of the types of neurons Hubel and Wiesel
had discovered in cortical area V1 (striate cortex), the type called
simple cells. According to the classical model, a simple cell adds
and subtracts the weighted amount of stimulation of the excitatory
and inhibitory areas in its receptive field. Since a neuron’s output is
spikes, and since spike rates lower than zero do not exist, a half-
wave rectification or similar nonlinearity was assumed to change
any below-zero result of the addition and subtraction into zero.
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Fig. 1. Simple multiple-analyzers model (top). Simplified sketch of visual pathways (bottom, based on Movshon (1990)).
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(This rectification was left implicit frequently, while referring to
the model as a linear system. This common practice has led to
some confusion.) Thus we will define a classical V1 simple cell as
a linear system (an adding and subtracting device) followed by a
half-wave rectification.

This classical V1 simple cell model was in decent accord with
known physiological results of the time. It turned out NOT to be
in complete accord with the physiology, however, as is discussed
below. Hence a distinction is made here between a classical V1 sim-
ple cell (one that is perfectly described by the classical model) and a
simple cell (any V1 cell that would be classified as a simple cell by
the criteria ordinarily used by physiologists of Hubel and Wiesel’s
time or today).

The simple multiple-analyzers model shown in the top panel of
Fig. 1 was and is a very good account, qualitatively and quantita-
tively, of the results of psychophysical experiments using near-
threshold contrasts. And by 1985 there were hundreds of
published papers each typically with many such experiments. It
was quite clear by that time, however, that area V1 was only one
of 10 or more different areas in the cortex devoted to vision. See
sketch in Fig. 1 bottom panel. (Lennie (1998) and Hochberg
(1998) give an interesting perspective on the complexity and func-
tionality of a subset of these cortical areas, V1 through V4 and MT.)
The success of this simple multiple-analyzers model seemed al-
most magical therefore. How could a model account for so many
experimental results when it represented most areas of visual cor-
tex and the whole rest of the brain by a simple decision rule? One
possible explanation of the magic is this: In response to near-
threshold patterns, only a small proportion of the analyzers are
being stimulated above their baseline. Perhaps this sparseness of
information going upstream limits the kinds of processing that
the higher levels can do, and limits them to being described by
simple decision rules because such rules may be close to optimal
given the sparseness. It is as if the near-threshold experiments
made all higher levels of visual processing transparent, therefore
allowing the properties of the low-level analyzers to be seen.

Even for near-threshold experiments, there were hints of extra
non-linear inhibition among analyzers (Graham, 1989). And for
supra-threshold psychophysical results (although not in the 1989
book, there were many tens of published papers I knew very well)
a satisfactory decision rule would either be very complicated or
very vague. Given that V1 is one area of many known visual areas
in the brain, and that even V1’s physiology was known to be more
complicated than the classical model of V1 simple cells, this was
not very surprising. But it was unclear how to improve the model
and yet keep it tractable and useful.

In the last 25 years a number of processes have been suggested as
possible additions to the simple multiple-analyzer model of Fig. 1,
additions which have the flavor of intermediate stages of visual pro-
cessing, of stages for which the physiological substrate might be V1
(or perhaps V2 or V3). These stages might be called the ‘‘hidden
stages’’ as they are far from the light image that stimulates the eye
and far also from both conscious perception and the control of ac-
tion. Several of these suggested additions to the simple multiple-
analyzers model are the substance of this review. They have been
suggested as explanations of pattern vision in general, both for psy-
chophysical and neurophysiological results. Here the discussion is
focused on the psychophysical side, but the neurophysiological is
too intertwined in the history to be ignored entirely. (A multi-author
paper from a mini-symposium in the early 2000s – Carandini et al.,
2005 – is one convenient source for more about the physiological
side as are other of the articles in this volume.)

I will discuss these additional processes as falling into the five
categories listed below, and the rest of the article will be organized
by these five categories. The general categories are neither mutually
exclusive nor exhaustive. There are specific examples in each cate-
gory, however, which are distinct from examples in other categories
and which seem to present distinct computational advantages and
to give different perspectives on desirable functionality. The list be-
low is ordered for ease of exposition as I could find no more system-
atic order (e.g. chronological) that turned out to be satisfactory or
useful.

0.1. List of five categories of additional processes

Addition 1. Higher-order processes (including FRF structures).
Addition 2. Divisive contrast nonlinearities (including contrast
normalization).
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Addition 3. Subtractive contrast nonlinearities (including con-
trast comparison).
Addition 4. Non-classical receptive fields (including surround
suppression and facilitation, cross-orientation or overlay
suppression).
Addition 5. Contour integration.

The sections in the main text below on Additions 2 and 3 form a
natural pair. They both focus on the intensive characteristics of
neurons or model units, and, in particular, on the magnitude of re-
sponse as a function of magnitude of input. The section on Addition
2 starts with an introduction to both categories, and the section on
Addition 3 ends with an example involving both categories.

The sections on Additions 4 and 5 return to the question of spa-
tial characteristics of behavior not explainable by the simple multi-
ple-analyzer model. In so doing, they overlap with each other, and
with all three of the preceding categories.

0.2. Scope of this review

This review focuses on static two-dimensional visual stimuli
(spatial patterns). Motion, color, and depth will only be mentioned
occasionally in this article. See other articles in this volume for
them. While it has proven useful to separate issues of spatial vision
from those of color, motion, and depth vision – as is done here –
this separation should be treated as a convenience and not as a
good representation of the visual system. Evidence is accumulating
that they are in fact intertwined at all stages of processing (see
Shapley & Hawken, 2011; also Hochberg, 1998; Lennie, 1998).

Unfortunately I will only be able to present a fraction of what is
known about each category of process listed above. For each cate-
gory, a description will be given of how the processes in the cate-
gory work, with an attempt to give some intuition as well as some
idea of the formalisms with which such processes are incorporated
into models. But much else beyond this is known. Very few of the
empirical results from psychophysics and physiology are covered.
From these results, much could be deduced about how these pro-
cesses’ characteristics vary with different dimensions of pattern vi-
sion (spatial frequency, orientation, retinal position, temporal
frequency or speed of motion, color, and their interactions). And
also omitted are many interesting suggestions about the possible
functionality of these processes, and about the possible evolution-
ary pressures that led to such processes existing. Since most of
these topics cannot be covered here in any detail, a large number
of studies and investigators are not directly referenced at all. To
try to compensate somewhat for this lack, references here have
been chosen not only for the work they directly report but
also for their references to other studies covering omitted
knowledge.

Also outside this review’s scope are two topics that are closely
related to the material covered. One topic is the question of how
to adequately model the known variability (noise) in both physiol-
ogy and psychophysics.

The second topic is the question of how to adequately model
the ‘‘missing link’’ between the entities of interest e.g. (analyzers
in the top of Fig. 1) and the observed measurement in the experi-
ment (e.g. the observer’s responses in the top of Fig. 1). Since, for
psychophysics, this missing link (the decision rule in Fig. 1) is likely
to be representing a great deal of processing in the brain – visual
and cognitive – the best way to specify it is far from trivial.

The problem of a missing link exists, however, even when the
entity of interest is a single neuron’s firing and the measurement
is the output from an electrode (How does one know that the elec-
trode found a representative sample of cells or that it is not distort-
ing the response of the cells?) And it is a well-known problem
using the increasingly popular fMRI measures.
In the bulk of the material reviewed in this article, with its
emphasis on modeling and on psychophysics, the aim is to keep
the implicit or explicit model of this missing link (the decision
stage in psychophysics) simple enough to allow investigation of
the preceding stages without being so simple as to be misleading.
There is some further material in Appendix A.

In general, I tried to include some cross-references to other arti-
cles in this volume but am sure many appropriate cross-references
are missing. Morgan’s article has particularly strong cross-ties with
this one. The general topic of both his article and this one is the
same: considering advances in our understanding of spatial vision
using a modeling approach and starting from a pure linear-filtering
approach. The specific focus of his article is quite different from
that of mine. In Morgan’s article, the specific focus is the question
of the existence of spatially-localized features or primitives (e.g.
edges) in human vision: the physiological and psychophysical evi-
dence for them; their appearance in the perceptions of the obser-
ver; whether they are or are not the same as features
importantly present in the natural patterns. In my article, the spe-
cific focus is on candidates for general-purpose calculations done
at intermediate levels of processing, and these intermediate calcu-
lations need have little to do with spatially-localized features. The
relationship of these intermediate calculations’ outputs to human
perception (or control of action) is assumed to be rather distant.
When psychophysical results are considered, the experiments are
assumed to belong in a special category allowing the observer’s re-
sponse to be calculated from the intermediate calculations’ outputs
by a simple decision rule (even though that simple decision rule is
representing a great deal of cortical processing). When physiolog-
ical experiments are considered, the neural substrate is intermedi-
ate in the approximate stream from light on the eye to the highest
areas, e.g. V1 through V4 and MT.

One line of work that could well belong within either specific
focus is described in Nachmias (1999) and the references therein.
This line of work considers observers’ likely use of spatially-local-
ized features to determine their responses in rather simple pattern
masking experiments. These simple masking experiments are a
class of experiments often used in the study of intermediate level
calculations like the multiple analyzers of Fig. 1 and the second-
order processes described next.
1. Addition 1. Higher-order processes (including FRF structures)

The first category of additions to the simple multiple-analyzers
model (Fig. 1) is called here higher-order processes. Prominent
among these are second-order processes, processes in which linear
units with one kind of receptive field – and with outputs that are
rectified or otherwise nonlinearly transformed – serve as inputs
for units with another kind of receptive field. A very large number
of investigators seem independently to have come up with sugges-
tions of this type. One very early suggestion was that of Henning,
Hertz, and Broadbent (1975). But these suggestions accelerated
and matured during the last 25 years. Much of the work up
through the early 1990s can be found in Higher-order processing
in the visual system, a book published in 1994 from a symposium
the previous year. There was also a special issue of JOSA A in Sep-
tember 2001 on second-order processes in vision. Reviews or over-
views of higher-order processes can also be found in many of the
references listed throughout this section.

Suggestions of second-order processes were frequently moti-
vated by the use of special patterns (often called second-order or
higher-order patterns) that have custom-made and perceptually-
salient characteristics. The simple multiple-analyzers model of
Fig. 1 cannot explain these perceptions. Examples are shown in
Figs. 2 and 3. Most observers see (among other things) relatively



Fig. 2. Three examples of second-order patterns. Adapted from Figs. 1 and 6 of Schofield (2000). Dashed ellipses are superimposed on the patterns in left and middle panels to
show receptive fields of linear filters corresponding to perceptually salient aspects of the patterns.
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wide stripes of one orientation in each of these patterns. These glo-
bal stripes are vertical in the left panel of Fig. 2, oblique in the cen-
tral panel, and vertical in the right panel. In Fig. 3 they are vertical
in the left two panels and horizontal in the right. Most human
observers can easily see the global stripes in both contrast-
modulated and orientation-modulated patterns (as in Fig. 3).
Furthermore, most observers can easily discriminate between
different orientations (or spatial frequencies) of global stripes in
rigorous psychophysical experiments.

That these characteristics could be readily perceived demon-
strated weaknesses in the simple multiple-analyzers model of
Fig. 1. The information necessary to identify these custom-made
characteristics would be lost if the observer were completely char-
acterized by simple linear filters by themselves (followed by only a
simple decision rule). To see why, consider the dashed ellipses in
Fig. 3. Each set of three ellipses shows a receptive field of spatial
frequency and orientation matched to the global stripes; the center
ellipse represents the center of the receptive field and the flanking
ellipses represent the inhibitory surround. Notice that the response
from each receptive field would be approximately zero because
each region (either inhibitory or excitatory) is stimulated by equal
amounts of light and dark which cancel out. Further, no matter
where these receptive fields are located relative to the pattern,
they will continue to produce outputs of approximately zero. Thus
observers cannot use receptive fields these to perceive the orienta-
tion, spatial frequency, or even the existence of global stripes.

The only receptive fields that produce (substantial) non-zero
outputs to the patterns in Fig. 3 are those small enough to respond
to the details in the individual Gabor patches. (A concrete example
showing these small receptive fields and their outputs will appear
in the top two rows of Fig. 6, described more completely in subsec-
tion 1.1.1.) However, the outputs of these small receptive fields at
different spatial positions just mimic the original pattern and show
all the local features but do not encode the fact of the global stripes
in any more direct way. Thus, a simple decision rule has no way of
lining up the non-zero responses from the little receptive fields to
figure out that those responses are arranged in wider stripes. More
generally, there is no size of receptive field that would allow a sim-
ple multiple-analyzer model (Fig. 1) to predict the fact that observ-
ers reported perceptions or performance in psychophysical
experiments.

1.1. FRF (Filter, Rectify, Filter) processes (structures, channels)

In the pattern-vision literature, the most common form of
higher-order process is often known by the name FRF channel or
FRF process where F is for ‘‘Filter’’ and R is for ‘‘Rectify.’’ We will
look here at this structure in some detail and, in particular, at
how it finds the global stripes in Figs. 2 and 3.
As shown in Fig. 4, an FRF channel consists of three parts: a lin-
ear filter characterized by: a relatively small weighting function (a
relatively small receptive field); followed by a point-wise nonlin-
earity of the rectification type; followed by a second linear filter
that is characterized by a relatively large spatial weighting func-
tion (a relatively large receptive field).

The assumption illustrated Fig. 4 is that each filter is not only a
linear system but is also translation-invariant (having the same
receptive field or weight function at each spatial position). This is
a false assumption about the visual system of humans and mam-
mals. In fact, sensitivity is generally highest at the fovea and de-
clines with eccentricity (although this depends somewhat on
spatial and temporal characteristics of the pattern). However, the
assumption of translation-invariant systems is not very restrictive.
One could easily substitute non-translation-invariant systems as is
occasionally done. Or, more commonly and usually implicitly, dif-
ferent regions of the visual field are considered separately and each
region (e.g. just the fovea by itself) is small enough that transla-
tion-invariance is a pretty good description within that region.

The rectification R at the in-between stage can take various
forms, including half-wave or full-wave rectification (of the usual
piecewise-linear type). Or, as shown in the diagram of Fig. 4, it
can be a function that is not made of linear pieces at all but is a
power function or some other simple function.

What is common to all these functions R is that they are operate
on individual points of the output from the filter, independent of
the outputs at other points. They are sometimes referred to as
instantaneous nonlinearities (perhaps because much work was
originally done with filtering in the time domain) but here the
word point-wise is used because it applies equally to points in
space and points in time.

(For more about linear systems and rectification, see glossary.)
As diagrammed in Fig. 5, a large number of such FRF channels

are assumed to exist in the visual system. This is analogous to
the assumption of a large number of simple linear channels in
the simple multiple-analyzers model. The FRF channels differ from
one another in the size and orientation of the receptive fields at the
first and second filters. In Fig. 5, the intermediate rectification
function (middle box in each row) is a conventional full-wave rec-
tification function.

One of the attractions of continuing to use linear systems in mod-
els like these is the accumulated knowledge about how to work with
them, knowledge known by the names linear-systems analysis, Fou-
rier analysis, and other related terms. And the computation of the re-
sponse of a linear filter by computer was made very fast by the
invention of an algorithm (called the Fast Fourier Transform).

Similarly one of the attractions of rectification stages (point-
wise nonlinearities) is that they also have proven mathematically
tractable.
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Fig. 4. Wiring diagram of an FRF (filter, rectify, filter) channel. The symbols on the diagram, e.g. L(x, y, t), have meanings that can be inferred from the diagram, but they can
also be ignored with little loss for the purposes of this review. They are explicitly defined in Graham and Sutter (1998).
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1.1.1. Illustration of how a ‘‘tuned’’ FRF channel responds to contrast-
modulated and orientation-modulated patterns

Fig. 6 illustrates the responses of FRF channels to patterns like
those in Fig. 3. The middle and right columns show the case of
an orientation-modulated pattern. The left column shows the case
of a contrast-modulated pattern. The contents of each row are de-
scribed in the labels on the left and show the results step by step of
processing in the FRF channel.

Each column shows the output of an FRF channel that has
spatial characteristics ‘‘matched’’ or ‘‘tuned’’ to the pattern in
question in at least spatial frequency. The spatial frequency of
the channel’s first filter is tuned to the Gabor patches. For each
pattern, two channels are shown: a channel having a first-stage
filter tuned for orientation and a channel having a first-stage
filter with a concentric receptive field (and therefore not tuned
for orientation). These two channels are shown separately for
the orientation-modulated pattern (in the right two columns)
but superimposed for the contrast-modulated pattern (in the
left column, to save space and emphasize the point that they
both lead to the same predictions). The spatial frequency and
orientation of the channel’s second filter is tuned to the global
stripes.

Notice that the output of the FRF channel to a contrast-
modulated pattern (bottom row, left column) shows a modulation
that reveals the global stripes in the pattern; this is true whether
the first-stage is concentric or tuned to the Gabor-patch orienta-
tion. (Of course if the first-stage filter had been tuned to an
orientation other than that of the Gabor patches, there would have
been no output from such a channel.)

The middle column shows that when the first-stage filter has
concentric receptive fields (and thus is not selective for orienta-
tion) and the pattern is orientation-modulated rather than
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semi-schematic. See text for further details.
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contrast-modulated, the FRF channel produces an output that
cannot reveal the global stripes (bottom row, middle column).
The right column shows that when the first-stage filter is it-
self orientation-selective, the FRF channel produces an output
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that does reveal the global stripes (bottom row, right
column).

As mentioned above, human observers can see the global
stripes in both contrast-modulated and orientation-modulated
patterns. Therefore, human performance can not be explained
using only FRF channels having concentric first-filter receptive
fields, but could be explained using only FRF channels having
orientation-selective first filters (and could also be explained using
both kinds of FRF channels in a model).

Examples of the stage-by-stage outputs of FRF channels to var-
ious artificial patterns can be found in Graham, Beck, and Sutter
(1992), Graham, Sutter, and Venkatesan (1993), Graham and Sutter
(1998) and Graham and Wolfson (2004). These are illustrated as in
Fig. 6 but with longer verbal descriptions than that here.

Examples of the responses of final outputs of simple linear
channels (a single filter) and FRF channels to photographs of natu-
ral scenes can be found in Johnson, Kingdom, and Baker (2005) and
Johnson and Baker (2004).

1.2. Other higher-order processes – second-order and even more
general

More elaborate than FRF but still in the general category of
higher-order are a number of other structures hypothesized for
pattern vision. Examples from eight studies are illustrated in
Fig. 7 and described briefly in the next several paragraphs. (The
Fig. 7. Sample of higher-order processes that have been suggested. From the publicat
consistency. Most of the diagrams are flow diagrams with receptive-field sketches. H
dimensional frequency space where the distance from the center point represents spa
horizontal represents orientation. Pooling across spatial frequency (respectively orient
Figure numbers in the original publications from which these diagrams here were adap
Waugh, 1996; Fig. 2 in Graham & Wolfson, 2004: Fig. 5 in Badcock et al., 2005; Fig. 5 in W
Motoyoshi & Nishida, 2004; Fig. 4 in Motoyoshi & Kingdom, 2007.
reader may need to consult the original references to fully under-
stand these examples.)

Some of these more elaborate schemes share the characteristic
of FRF processes in that outputs from units with small receptive
fields at different spatial positions go into units with bigger recep-
tive fields, and thus are being called second-order processes here. In-
stances like this in Fig. 7 include the orientation-modulation unit
of Motoyoshi and Nishida (2004), and orientation-opponent chan-
nels of Graham and Wolfson (2004), and spatial frequency contrast
units of Arsenault, Wilkinson, and Kingdom (1999). Many struc-
tures in this larger category of second-order processes can be seen
as veering into the contour-integration processes discussed in the
Addition 5 section. For example, various schemes (called names like
collator and collector units, e.g. Levi & Waugh, 1996, shown in
Fig. 7) are frequently discussed as ways of detecting contours,
and in that sense are doing contour integration.

There are other higher-order processes that differ from all those
described so far in an important way. In the examples so far, the
second stage collects outputs from first-stage receptive fields that
are centered at a variety of spatial positions in the visual field. The
second stage of other higher-order processes, however, collects
outputs from first-stage receptive fields that are all centered at
the same spatial position. These receptive fields differ along some
dimension other than spatial position. For example, in the MIRAGE
model, the outputs of receptive fields at the same position but with
different preferred spatial frequencies were half-wave-rectified
ions indicated by labels on the figure, slightly modified in a number of cases for
owever the pair of diagrams from Olzak and Thomas (1999) are plotted in two-
tial frequency and the angle between the line from the center to a point and the
ation) is shown by the gray area in the diagram on the left (respectively right).
ted are (from upper left to lower right in ordinary reading order): Fig. 14 in Levi &
ilson, 1999; Fig. 6 in Olzak & Thomas, 1999; Fig. 9 in Arsenault et al., 1999; Fig. 8 in
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and added in order to create an edge-finding mechanism that com-
bined information across scale. (See Morgan’s article in this vol-
ume.) In another example, receptive fields at the same position
but differing in either spatial frequency or orientation (but not
both) were used in order to explain performance in different tasks:
pooling across preferred spatial frequency was useful for some
tasks and orientation for others (Olzak & Thomas, 1999, shown in
Fig. 7).

Many other varieties of higher-order channels – wiring dia-
grams with layers of different receptive fields and rectification type
nonlinearities in-between – have been suggested for the explana-
tion of many other perceptual phenomena as shown in several fur-
ther drawings in Fig. 7 (Badcock, Clifford, & Khuu, 2005; Motoyoshi
& Kingdom, 2007; Wilson, 1999).

And a caution: Some of these higher-order processes – if consid-
ered not as hard-wired but instead somewhat plastic in response
to particular task demands – might have their primary substrate
at very high levels of the visual system (even if feedback to the
intermediate levels means that the intermediate levels’ responses
show evidence of these processes).

1.3. A sample of references for further reading

Much is now known about the spatiotemporal properties of
higher-order processes in human vision and their dependence
on the other parameters of pattern vision, and some references
already given here include information of this sort. A small hap-
hazard sample of additional studies (with a bias toward recent
and toward authors not previously cited here) includes: Allard
and Faubert (2007), Ellemberg, Allen, and Hess (2006), Hess,
Baker, May, and Wang (2008), Manahilov, Simpson, and Calvert
(2005), Schofield and Georgeson (1999), Vakrou, Whitaker, and
McGraw (2007).
Other studies slightly farther afield include: reading 2nd-order
letters in Oruc, Landy, and Pelli (2006), 2nd order learning in
Dosher and Lu (2005), 2nd-order illusions in Lu and Sperling
(1996); high-order phase correlations in Victor and Conte (1996).

In other places in this volume, second-order mechanisms are
discussed in motion perception by Burr and Thompson, in stereop-
sis by Blake and Wilson in attention by Carrasco, and in visual
search by Morgan.

There has been a small amount of work on the possible neural
substrate of FRF, second-order, and higher-order channels. There
is some work on cat single neurons (e.g. Baker & Mareschal,
2001), primate single neurons (e.g. El-Shamayleh & Movshon,
2006; El-Shamayleh, 2009) and human fMRI (e.g. Hallum, Landy,
& Heeger, in press; Larsson, Landy & Heeger, 2006). The amount
of physiological work to date is small, however, and this addition
to the simple multiple-analyzers model of pattern vision has been
motivated primarily by perceptual observation and psychophysical
experiments rather than by physiology.

In the last several decades there has been a growing emphasis on
understanding the role of proposed visual mechanisms – and, in par-
ticular, of FRF or more general higher-order mechanisms – in every-
day vision. It remains rather unclear what that role might be for
higher-order mechanisms – or why evolution might have produced
such mechanisms. For a starting point on this topic, a reader could
consult two papers that analyze the output of groups of multiple
simple linear and FRF channels to natural images (Johnson et al.,
2005; Johnson & Baker, 2004). There is also a third paper following
on the first two that uses artificial stimuli based on natural images
in psychophysical experiments (Johnson, Prins, Kingdom, & Baker,
2007). It concludes that, when local second-order and first-order
information are present in the artificial images in ecologically valid
way, discrimination performance in the laboratory is improved.
These papers provide many other references as well.
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2. Addition 2. Divisive contrast nonlinearities (including
contrast normalization)

2.1. Introduction to this section and the next: divisive and subtractive
contrast nonlinearities

When supra-threshold patterns are used, quantitative results
both from human psychophysical experiments and also from phys-
iological experiments on V1 simple cells show clear nonlinearities
that are direct violations of the simple multiple-analyzer model of
Fig. 1. In particular, nonlinearity is immediately apparent when re-
sponse magnitude is plotted as a function of stimulus contrast
magnitude. In physiological experiments, the response is measured
directly from single cells or from groups of cells. In psychophysical
experiments, the response is inferred indirectly from psychophys-
ical results in contrast-discrimination, adaptation, masking and
other experiments. This section (Addition 2) and the next (Addition
3) are about two broad classes of contrast nonlinearities (divisive
and subtractive) that can describe the non-linear relationship be-
tween the contrast magnitude and response magnitude and the
systematic changes that occur in this relationship across different
conditions, e.g. when the function is measured in the presence or
absence of other patterns.

Consider any function R = f(c). For our purposes here R is re-
sponse magnitude and c is stimulus contrast magnitude. As dis-
played in Fig. 8, you can form a new function in any of four
simple ways, each involving only a single parameter a. These four
ways are the four possible combinations of:

– whether R or c is manipulated (top vs. bottom of table);
– whether the manipulation is division of the variable by a or sub-

traction of a from the variable (left vs. right of table).

The table also shows a possible name for each kind of process
(in italics at the bottom of each cell). Other terms are used as well
in the literature, and the differences among terms can be quite con-
fusing. We will use the terms in the table. They will often refer,
however, not to the absolutely pure cases shown in this table but
to near relatives.

Empirical and theoretical values of R as a function of contrast c
have been plotted many ways. Some of the most frequent involve
using a log or linear axis for R, and using a log or linear axis for c.
All four possible combinations are used from time to time. In the
middle of each cell in the table is a particularly useful fact about
the graphs for the case in that cell. These four facts can be summa-
rized as saying: if parameter a is dividing a variable (R or c), it is
useful to plot that variable (R or c) on a log axis. Similarly, if the
value of the parameter a is subtracting from a variable, it is useful
to plot that variable on a linear axis. The usefulness arises from the
fact that, when plotted in the stated way, the family of functions
produced by varying the value of a is a set of curves that are simply
translations (shifts) of each other on the relevant axis. Such shifts
can be easily and immediately perceived when looking at plots.

2.1.1. A point of terminology
Rather than referring to the categories as divisive and subtrac-

tive, they are sometimes called multiplicative and additive. Divi-
sion by a is the same as multiplication by 1/a. Similarly
subtraction of a is the same as addition of �a.

2.1.2. A caveat about divisive vs. subtractive
Making a distinction between divisive and subtractive pro-

cesses is often quite useful. It should be treated with caution, how-
ever. Remember that the log of a quotient equals the log of the
numerator minus the log of the denominator. If a process of inter-
est simply takes the quotient of two inputs to produce an output,
consider what happens if you now redefine the inputs and outputs
of that process to be the logarithms of the original values. The pro-
cess now subtracts one of the two newly-defined inputs from the
other to produce its newly-defined output. Thus what might have
been called a divisive process originally looks like a subtractive
process now. Any difference between the old and the new case is
simply a matter of exactly what the ‘‘input’’ and ‘‘output’’ are.
For our purposes here, it makes sense to consistently use contrast,
not log contrast, as the input, and thus we avoid most of these
problems.

2.1.3. A caveat about whether the variable affected is response or
contrast

If f is a linear function, then the top and bottom rows of Fig. 8
are indistinguishable. For in this case, anything that divides c can
be rewritten as dividing response R (left column). And the same
is true for subtraction (right column). But since we are usually talk-
ing about non-linear functions f, this matters little here.

2.2. More about the two divisive cases: response-gain and contrast-
gain change

That the two divisive cases (left column of table in Fig. 8) gen-
erally make different predictions can be seen in Fig. 9, which shows
a family of functions illustrating response-gain change in the left
panel and contrast-gain change in the right panel. The axes for this
figure are logarithmic, i.e. log response versus log contrast. Each
family is fitted as well as possible to empirical results from a rep-
resentative cortical area V1 neuron (Albrecht & Hamilton, 1982).
The different functions in these empirical results (shown as data
points) result from varying the spatial frequency of the pattern
stimulating the neuron. Notice in the predictions that there are
vertical translations in the case of response-gain change and hori-
zontal translations in the case of contrast-gain change predictions.
(To see an example plotted in a different way, look ahead to Figs. 12
and 13 for some functions plotted as linear response versus log
contrast.) The set of empirical results (data points) in Fig. 9 is well
described by the response-gain change family of functions and not
well described by the contrast-gain change family.

This figure from Albrecht and Hamilton (1982) uses a 3-
parameter non-linear function that had been used for some
decades for describing responses of neurons and for many other
reasons in many fields of science. It was called the hyperbolic ratio
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Fig. 9. Response (data points) versus contrast for a typical V1 simple cell for four different patterns. The solid lines show a fitted family of functions of the response-gain-
change type (left panel) or contrast-gain-change type (right panel). Both the horizontal axes and the vertical axis are logarithmic. The horizontal axis gives the contrast of the
stimulus. There are four sets of data points (indicated by different symbols) showing the responses of the cell to four different spatial frequencies. From Fig. 9 in Albrecht and
Hamilton (1982) relabeled to match the terminology here. Used with permission, Am Physiol Soc.

Fig. 10. Models of normalization as feedback circuit for V1 cells (top) and MT cells
(bottom). From Fig. 1 in Heeger, Simoncelli, and Movshon (1996).
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(or H ratio) function in this study. Other names used for it – or very
close relatives to it – include Michaelis–Menten function and
Naka–Rushton function.
RðcÞ ¼ Rmax�
cn

cn þ cn
50

ð1aÞ

It has three parameters. Rmax is the maximum (or saturation) re-
sponse as c goes to infinity. The parameter c50 is the value of con-
trast that produces a response exactly equal to half the maximum
(or saturation) response Rmax. It is often called the half-saturation
contrast. The parameter n affects the steepness of the curves.

As you can verify by examination of Eq. (1a) and the equations
in the table of Fig. 8, varying the maximum response Rmax in Eq.
(1a) is exactly the response-gain-change type (the upper-left cell
of the table of Fig. 8). Therefore, this variation produces a family
of functions that are exactly vertical translations of one another
on the log response axis (Fig. 9 left).

Varying the half-saturation contrast c50 is exactly equivalent to
the contrast-gain-change case (lower-left cell of table of Fig. 8). To
see this more easily, first divide both the numerator and the
denominator by cn producing the expression:

RðcÞ ¼ Rmax�
1

1þ cn
50=cn

� � ð1bÞ

So c50 is playing the role of a in the contrast-gain change cell of
the table (Fig. 8). As expected, therefore, varying c50 produces func-
tions that are horizontal translations of one another on the log con-
trast axis (Fig. 9 right).

Terminological notes: The value of the half-saturation contrast
c50 can also be referred to more generally as a contrast threshold,
where the associated threshold criterion is the half-maximum re-
sponse. The reciprocal of c50 (that is, the value of 1/c50) is called
the contrast gain or contrast sensitivity. The smaller the value of
threshold is, the greater the value of gain or sensitivity.

One might refer to the value of Rmax as the value of the response
gain, but that seems to be less common usage. However, situations
in which the value of Rmax changes are frequently referred to as re-
sponse-gain changes.

2.3. Contrast normalization model – a divisive nonlinearity

The function in Eqs. (1a) and (1b) was in the pattern-vision lit-
erature originally as a simple description of response versus con-
trast (as in Fig. 9) with little commitment to the process that
might have led to these equations. This was true earlier than
25 years ago. (Before being used for describing response as a



Fig. 11. Model of normalization as feedforward circuit. Symbols defined in text.

Fig. 12. Each panel shows a pair of contrast-response functions for a stimulated
neuron, as predicted by a normalization model of attention. One is the function for
attending to a stimulus within the neuron’s receptive field (black or red,
‘‘Attended’’) and the other when attending to a stimulus in the opposite hemi-
field (light gray or blue line, ‘‘ignored’’). The contrast of the test stimulus is plotted
on the horizontal axis. The normalization model of attention predicts predomi-
nantly contrast-gain change in the left panel and predominantly contrast-response
gain in the right panel. Which it predicts depends on the stimulus size and the size
of the attention field (sketched in the inset of each panel). These two cases are
reversed left-to-right compared to those in Fig. 9. Note also that here the vertical
axis is in linear units while it was logarithmic in Fig. 9. In both figures, the
horizontal axis is logarithmic. From Fig. 2 in Reynolds and Heeger (2009).
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function of stimulus contrast, it was used for response as a function
of stimulus luminance.)

Also in the pattern-vision literature earlier than 25 years ago
were suggestions of various kinds of inhibitory processes that were
non-linear (as distinguished from the linear subtraction acting in
the classical V1-simple-cell model). Many of these suggestions
were qualitative but there were some models of inhibition that
could be applied, e.g., the well-known inhibition in the eye of the
horseshoe crab (the limulus) that can be modeled by the
Hartline–Ratliff equations for recurrent (feedback) inhibition. And
there were a number of computer instantiations of multiple inter-
acting neurons as well. At that earlier time, however, these models
seemed to be cumbersome and leading to little intuition. So they
did not seem to be a tractable and useful way of adding this sug-
gested inhibition to models of psychophysics. (Of course, at that
time, computers were much slower and had much smaller memory
capacity.)

Then about 20 years ago an influential class of ideas about non-
linear inhibition surfaced from two different (although probably
not totally independent) sources. One source was physiological re-
search (e.g. Bonds, 1989; Heeger, 1991, 1992) and the other was
psychophysical research (e.g. Foley, 1994; see also Legge & Foley,
1980). The name contrast normalization is often used for this class
of process and we will use it here. In a normalization network, the
response of each neuron is divided by (is normalized by, has its
contrast gain set by) the total output from a pool of neurons. Such
a process may prevent overload on higher levels and overcome the
limitations of a restricted dynamic range while simultaneously
preserving selectivity along dimensions like orientation and spatial
frequency. Perhaps it helps encode images more efficiently. (Many
references to the early history and to other investigators working
on these ideas can be found in, e.g. Graham & Sutter, 2000;
Reynolds & Heeger, 2009.)

One striking aspect of this class of ideas is its tractability in
models. The suggested equations from both sources (e.g. Heeger,
1991; Foley, 1994) look much like Eq. (1a) with the added feature
that the denominator is elaborated to include contributions from
multiple neurons or units that are inhibiting the signal neuron.
(We use signal unit or neuron here to mean the unit or neuron from
which the response R is being measured or inferred in these equa-
tions.) The equations from the two sources are not precisely iden-
tical (except in certain sub-cases) but indeed the differences seem
minor relative to the similarities and we will look in some detail at
a particular example below.

Fig. 10 shows simple diagrams of normalization networks in
two different places in the visual cortex – V1 and MT – for which
Heeger and his colleagues propose a normalization model as a
good account of many experimental results. In these diagrams
the normalization is a feedback effect onto the signal neuron from
a pool of neurons (potentially including the signal neuron).

A feedforward normalization network is shown in Fig. 11. As it
turns out, the same equations can be used for either the feedfor-
ward or feedback case if one is not concerned with dynamics re-
sponses near transients. Discussion and further references can be
found in Reynolds and Heeger (2009).

The symbols that label connections in Fig. 11 are used in the
equations below. They are:

Rj = Response from unit j,
cj = contrast stimulating unit j,
sj = sensitivity along excitatory path for unit j,
wj = weight on unit j’s input to normalization network,
r = parameter characterizing the amount of normalization.



Fig. 13. Examples of three types of contrast nonlinearities (Contrast gain, Response gain, and Response subtraction) plotted as linear response versus logarithmic contrast. The
original authors use the term Subtraction for what is called Response subtraction here. (With slightly expanded labeling from Fig. 5A of Cavanaugh, Bair & Movshon (2002).
Used with permission, Am Physiol Soc.
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The smaller the value of r the larger the effect of normalization.
(See further description in the beginning of Appendix B.) All the
above symbols have values greater than or equal to zero except
that r is strictly greater than zero (so that the denominator can
never be zero).

A typical equation for contrast normalization then assumes the
form shown in Eq. (3). In Eq. (3) and the following equations, the
signal neuron or unit – the neuron or unit of interest – will be num-
bered as the first unit and given the subscript 1.

R1 ¼
s1 � c1

Hðr;w1 � c1;w2 � c2; . . . ;wN � cNÞ
ð2Þ

where the denominator is a function H of many variables. R1 is also
a function of many variables (the ones in the denominator as well as
in the numerator). The arguments of R1 are not explicitly written
out in Eq. (3), however in order to make it easier to read. The argu-
ments are written out in Appendix B.

The input from each unit to the normalization network is as-
sumed to be wj � cj (the weight factor times the contrast stimulat-
ing that unit). These inputs can in general include one from the
signal unit itself, as indicated in Eq. (3) and sketched in Figs. 10
(as feedback) and 11 (as feedforward). The function H is often con-
sidered to be a power-summation (Minkowski distance, Quick pooling
– see Appendix A for more about such measures) with an exponent
of 2 or higher, or something very similar. But for simplicity in expo-
sition – and transparency of the basic concepts – in Eqs. (2) and (3)
and Appendix B we will use an exponent of 1.

R1 ¼
s1 � c1

rþw1 � c1 þ
Pj¼N

j¼2 ðwj � cjÞ
ð3Þ

Note that the denominator in Eq. (3) is the sum of several terms: the
parameter r that characterizes the normalization; the contribution
of the signal unit to its own inhibition w1 � c1; and the summed con-
tribution of other units to inhibition of the signal unit.

In the Appendix B, Eq. (3) is further reduced to represent a mod-
el in which there are only two units: the signal unit and one other
unit.

Normalization models incorporating equations like Eqs. (2) or
(3) can make predictions of several kinds. Four of these will be
listed below without attempting here to derive these equations.
Some derivations can be found in Appendix B here and also in
the other references given.

(i) Situations showing predominantly contrast-gain change.
See Case 1 in Appendix B here for a two-unit model example.

This could be applied to an experiment in which the contrast of a
test pattern varied while the contrast of a mask (or adapt) pattern
was held constant. It predicts pure contrast-gain change.
See Heeger, 1992 (Fig. 2 and accompanying text) for an example
of pure contrast-gain-change predictions from normalization that
explain the effects of contrast adaptation on the contrast response
function of V1 cells.

A more complicated situation in which the normalization model
can predict predominantly contrast-gain change is illustrated in
the left panel of Fig. 12. This is from a study of attention. For these
predictions the normalization model as we have looked at it was
augmented with assumptions about attention. (See Reynolds and
Heeger (2009), Fig. 2A and associated text on p. 271. See also
Carrasco (2009))

(ii) Situations showing mixtures of response-gain and contrast-
gain changes.

See Case 2 in Appendix B here for a two-unit model example.
This could describe experiments in which the contrasts of a mask
pattern and a test pattern both vary together. It predicts substan-
tial changes of both contrast gain and response gain. Heeger
(1992) discusses cases like this.

(iii) Situations showing predominantly response-gain change.
See Case 3 in Appendix B here for a two-unit model example.

This example could, for example, describe experiments in which
the response to a pattern was measured as a function of its contrast
(for any one curve) but the spatial frequency or orientation or other
similar value varied between curves. (This is the kind of experi-
ment already shown in Fig. 9.) The predictions in Case 3 Appendix
B are for pure response-gain change.

Also Heeger (1992, Fig. 3 and accompanying text) provides a
prediction of pure response-gain change for this kind of experi-
ment from a more general normalization model.

Normalization preserves selectivity. If it is predominantly the re-
sponse gain that changes when spatial frequency or orientation is
varied between curves, then the unit’s spatial frequency and
orientation-selectivity will remain quite narrow even at the highest
contrasts. This is experimentally found for many cortical neurons
(e.g. the results shown in Fig. 9 here and also shown compared to
normalization predictions in Heeger, 1992, where Fig. 3 again shows
response vs. contrast and Fig. 4 shows response vs. spatial fre-
quency). The ability of the normalization model to predict the pres-
ervation of selectivity across the contrast range for, e.g., spatial
frequency and orientation was one of the major motivations for con-
sidering contrast normalization seriously. It is often listed as one of
the possible reasons evolution might have favored the development
of this kind of process.

A situation involving attention that shows response-gain
change, perhaps mixed with a tiny bit of contrast-gain change, is
shown in the right panel of Fig. 12 (Reynolds & Heeger, 2009,
Fig. 2B and accompanying text on p. 172).

(iv) The normalization model can predict Weber-law
behavior.
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For psychophysical contrast-discrimination experiments
(where an observer’s ability to discriminate between a pattern at
one contrast and the same pattern at a different contrast is mea-
sured and typically the data presented as contrast thresholds),
the normalization model can predict the Weber-law or near-
Weber-law behavior that is typically observed.

The normalization model can also predict Weber-law behavior in
somewhat more complicated pattern-discrimination experiments
that measure above-threshold behavior as well as near-threshold
behavior (Graham & Sutter, 2000; Wolfson & Graham, 2009).

2.3.1. About a missing exponent to incorporate an accelerating point-
wise nonlinearity

An exponent found in many models containing contrast
normalization was omitted in the equations here for the sake for
clarity. This is an exponent on the contrast values – e.g. all the cj

values in Eqs. (2) and (3) might be raised to an exponent. When
this exponent is greater than 1, it can represent an accelerating
early nonlinearity that operates on the stimulus contrast before
the unit’s input to the normalization network. Models including
this exponent on contrast can account for the so-called pedestal
or dipper effect found in psychophysical contrast-discrimination
results. And they can predict other related effects found in the
more complicated pattern-discrimination experiments. (See, for
example, Foley, 1994; Graham & Sutter, 1998. This exponent
explicitly appears in this article in the model at the end of Addition
3 as km in the equations of Fig. 18.)

2.3.2. About a missing decision rule
For ease of exposition, predictions for the response of a single

unit were discussed here. This is reasonable when the unit is a neu-
ron, and that single neuron’s responses can be measured directly.
However, in psychophysics, the observer’s responses are necessar-
ily a result of many different units’/neurons’ responses. Simply
looking at the most sensitive unit – as we implicitly did above –
is not in general satisfactory for psychophysics. More sophisticated
decision rules are required. Discussion of this stage is largely omit-
ted from this article, but there is some in Appendix A.

2.4. A sample of references for further reading

Many other studies by many other investigators deal with divi-
sive contrast nonlinearities in general, and with the model of con-
trast normalization in particular. Only a very few of these have
been explicitly referenced so far. What follows here is a sample
of a few more references, rather widely scattered over the possible
set that could be listed here, to allow a reader to pursue an interest
in this topic: Bex, Mareschal, and Dakin (2007), Bonds (1993),
Carandini (2004), Carandini, Heeger, and Movshon (1997), Goris,
Wichmann, and Henning (2009), Itti, Koch, and Braun (2000),
Meese and Holmes (2002), Olzak and Thomas (2003), Ringach
(2010), Schwartz and Simoncelli (2001), Victor, Conte, and Purpura
(1997), Watson and Solomon (1997). Many other studies can be
found in the reference lists of the ones explicitly mentioned.

In this volume, the use of contrast-gain controls (e.g. contrast
normalization) is discussed in models of brightness by Kingdom
and in models of binocular vision by Blake and Wilson.

3. Addition 3. Subtractive contrast nonlinearities (including
contrast comparison)

The table in Fig. 8 shows two subtractive contrast nonlinearities
as well as the two divisive nonlinearities described in the last sec-
tion (Addition 2). These two cells for subtractive nonlinearities are
described further in this section (Addition 3). Response subtraction
is covered very briefly first and then contrast subtraction at greater
length. This section ends with an example of a model incorporating
both a divisive and a subtractive nonlinearity.

3.1. An example of response subtraction

Fig. 13 shows predictions from three of the four contrast nonlin-
earities listed in the table of Fig. 8. (The missing fourth one is con-
trast subtraction – the lower right cell in Fig. 8. It is discussed in the
next subsection.) The horizontal axis in Fig. 13 is logarithmic con-
trast. Thus the relationship between the original function (thick so-
lid black line) and a function with a different amount of contrast
gain (thin solid gray line) is a horizontal translation. The vertical
axis is response in linear units. Thus the relationship between
the original function (thick solid black line) and a function with a
different amount of response subtraction (thin solid black line) is
a vertical translation. But on this linear axis, the relationship be-
tween the original function (thick solid black line) and the function
with a different amount of response gain (dashed black line) is not
a simple vertical translation; rather, the two curves diverge and get
further and further apart from one another as contrast gets higher.

Predictions like those in Fig. 13 were explicitly compared to re-
sponse vs. contrast functions from single V1 neurons in a study of
surround suppression (Cavanaugh, Bair & Movshon, 2002). See
next section of this review (Addition 4) for more about surround
suppression.

3.2. An example of contrast subtraction: Contrast comparison

An example of a subtractive nonlinearity that operates on con-
trast (the lower right cell in Fig. 8) is the recently suggested process
named contrast comparison (Graham & Wolfson, 2007; Wolfson &
Graham, 2007). In explaining visual perception, it is usually as-
sumed that the action of contrast is monotonic with 0% contrast
(unchanging gray) being least effective and contrast values greater
than 0% producing greater effects. However, some recent psycho-
physical evidence suggests that, at least for some pathways
between visual image and perception, something highly non-
monotonic with contrast occurs, something like the suggested
contrast-comparison process, which goes like this: A comparison
level is computed at each spatial position in the pattern; this com-
parison level equals the recent weighted average contrast at that
position (averaged over a short period, a fraction of a second). The
comparison level at a position is subtracted from the current value
of contrast at that position, and thus the comparison level plays
the role of the constant a in Fig. 8, making this process an example
of contrast subtraction. To form the final output of the process, the
magnitude of the difference between current and recent average
contrast is retained, but information about the sign of the difference
(increase vs. decrease in contrast) is lost or degraded.

Fig. 14 shows the input–output function for the proposed con-
trast-comparison process: the input–output function at a particu-
lar spatial position translates horizontally on an axis linear with
contrast, when the recent history of contrast at that position
changes as shown by the arrows.

The input–output function is drawn in Fig. 14 as a full-wave rec-
tification centered at the current comparison level, that is, the out-
put is the absolute value of the difference between the current
contrast and the comparison level. This full-wave rectification
function would predict complete loss of information about the sign
of the contrast change. A complete loss turns out to be too dra-
matic for any of our observers so far. Thus the actual function used
in the model will be less extreme (as will be discussed below in ref-
erence to the bottom panel Fig. 17).

3.2.1. An experiment showing the straddle effect
The evidence for this proposed contrast-comparison process

comes from an effect we initially found rather surprising (called



A possible comparison process

Output of 
process

Input to process = Some response 
linear with local contrast (e.g. contrast 

of Gabor patch in these patterns)

Comparison level reset by 
recent experienced contrast

Fig. 14. A proposed contrast-comparison process. This is an example of a contrast
subtraction process. Modified from Graham and Wolfson (2007), Wolfson and
Graham (2007).
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the straddle effect here) of the contrast of one pattern on the per-
ception of an immediately-following test pattern. In particular,
when a test pattern is composed of two contrasts straddling the
contrast of the pattern that immediately preceded it – that is, when
one test contrast is above the previous contrast and the other test
contrast is below – the test pattern is very difficult to perceive
correctly.

Fig. 15 shows the characteristics of one experimental task pro-
ducing the straddle effect. An Adapt pattern – composed of four
identical Gabor patches – is presented for a short period of time.
The Adapt pattern is immediately followed by a brief-duration Test
pattern. The task of the observer is to say whether the global stripes
are horizontal or vertical. See figure and its legend for more details.
The adapt stimulus as shown in Fig. 15 is only on for a fairly short
time (1 s). Thus, while we are use the language of adaptation
experiments here, the experiment might also be called a study of
masking. It might also reasonably be called simply a study of the
temporal processing of visual contrast.

Some results from an experiment like that in Fig. 15 are shown
as the data points in Fig. 16. These results are from an experiment
where five different adapt contrasts and many average test contrasts
were used; the difference between the two test contrasts was
Fig. 15. A diagram of a single trial from an experiment that demonstrates the straddle e
pattern is presented on any single trial, three possible ones are shown here to illustrate t
adapt contrast, or are below the adapt contrast. The test patches always are identical exc
those in the Adapt pattern. The observer’s task is to identify the orientation of the contras
the patches (local orientation) and the orientation of the global stripes (global orientation
See Wolfson and Graham (2009) for more details of this and related experiments and
presentation of the Adapt pattern. However, replacing that second Adapt presentation wit
Fig. 1 in Wolfson & Graham, 2009.) This experiment can be called an adaptation experim
an experiment to explore the temporal properties of visual contrast processing.
always 10%. In the left half, all the results from one observer (from
all five adapt contrasts) are plotted on a horizontal axis that gives
difference between adapt and average test contrast. In the right
half, they are plotted in separate panels by adapt contrast (for each
of the two observers). The horizontal axis is the average test con-
trast and a diamond on the horizontal axis marks the value equal-
ing the adapt contrast. (The solid lines are predictions discussed
below.)

The straddle effect is the sharp dip in performance, which pro-
duces a notch in the curve, when the average test contrast is very
near the adapt contrast so that the two test contrasts straddle the
adapt contrast. For the results in Figs. 16 the adapt duration was
1 s, but much shorter adapt durations, e.g. 50 ms, will still produce
the straddle effect (Foley, 2010; Graham & Wolfson, in press).

Notice that the lowest point in the notch (the minimal perfor-
mance in the straddle effect) does not always get as low as chance
(50% in this experiment). See, for example, the panels for 25% adapt
contrast. This above-chance performance is an example of partial
retention of information about the sign of a contrast change, of
the visual system’s partial although far from perfect ability to dis-
tinguish increases and decreases of equal size.

Also notice that, for average test contrasts just above or just be-
low the contrast range showing the straddle effect (above or below
the average test contrasts in the notch), the observer’s performance
is excellent. However, as the average test contrast gets very far be-
low or very far above the adapt contrast, performance declines
again. In other words, adaptation generally improves performance
for test contrasts that are close to the adapt contrast relative to
those further away but there is a dramatic exception for the strad-
dle effect. Or to put it in other words: If you view each curve in the
right side of Fig. 16 as the silhouette of a mountain that happens to
have a canyon at its very peak, then you could say that that moun-
tain’s peak moved from the left side (near 0%) to the right side
(near 100%) as the adapt contrast moved from the left side to the
right side.

Improving the observer’s performance for contrast values near
the recent adapt contrast (moving the mountain’s peak in the fig-
ure to follow the value of the adapt contrast) is often suggested
as a valuable function of adaptation. Perhaps the bad performance
shown by the straddle effect (the canyon at the very peak, that re-
flects the inability of the system to keep track of contrast increases
ffect and thus suggests the existence of contrast comparison. Although only one test
he 3 cases where the two test contrasts are above the adapt contrast, or straddle the
ept for contrast to those in the Adapt pattern and are in the same spatial position as
t-defined stripes (the global orientation) as horizontal or vertical. The orientation of
) can be either horizontal or vertical, and they vary independently from trial to trial.

their results. In the task shown here, the Test pattern is then followed by another
h gray does not erase the straddle effect in the typical situation. (See Supplementary

ent (as implied by the terms used in this figure), or a masking experiment, or simply
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TYPES:

BEHAVIOR: WEBER for 
DECREASES

WEBER for 
INCREASESSTRADDLE 

EFFECT

Fig. 16. The data points in the left part of this figure show one observer’s results from the experiment in Fig. 15, for five different adapt contrasts, superimposed so that the
adapt contrast is at the center of the horizontal axis. The right part of this figure shows the results for the five different adapt contrasts separately for two observers. Error bars
show ±1 standard error calculated across sessions. The solid lines are the predictions from the model of Figs. 17 and 18. Experimental results from Graham & Wolfson, 2009;
Predictions from Graham et al., 2009.

N.V. Graham / Vision Research 51 (2011) 1397–1430 1411
versus decreases) is an undesirable but relatively minor side effect
of the overall useful value of this adaptation. Or, to speak in terms
of process, perhaps the bad performance shown by the straddle ef-
fect is due to some design constraint; perhaps evolving a system to
produce the best (fastest, most efficient) contrast-change detection
is very difficult unless there is some accompanying loss of informa-
tion about the direction of the change. See further discussion in
Graham and Wolfson (2007, in press).

3.2.2. Weber-law behavior along with the straddle effect
The decline at the tails of the function is an instance of Weber-

law behavior, since, in the tails, performance depends on the ratio
of two intensities and depends in such a way that performance de-
clines as that ratio becomes closer to 1. In this case the ratios are on
an intensity dimension that is not something as simple as lumi-
nance or contrast; instead the dimension is the unsigned difference
between current contrast and recent time-averaged contrast. For
this experiment, it is the unsigned difference between a contrast
in the Test pattern and the contrast in the Adapt pattern that pre-
ceded it. See further discussion in Wolfson and Graham (2009).

As was mentioned in the previous section (Addition2) contrast-
normalization models can predict Weber-law behavior.

Shortening the adapt duration much below 1 s dramatically
changes the behavior at the tails of the function, particularly the
left tail, an outcome quite different from the lack of change of
the notch (Graham & Wolfson, in press).

3.3. Model incorporating a divisive nonlinearity and a subtractive
nonlinearity

The abstract model shown in the diagram of Fig. 17 and embod-
ied in the equations of Fig. 18 contains both a divisive nonlinearity
(contrast normalization) and a subtractive nonlinearity (contrast
comparison). The diagram in Fig. 17 only shows in detail one chan-
nel, but the model contains many channels sensitive to different
ranges of spatial frequency and orientation. The responses of all
the channels are assumed to form the input to a decision stage
(as in the ‘‘Decision rule’’ oval of Fig. 1 or the ‘‘Pooling and Deci-
sion’’ square of Fig. 5) although that decision stage is not explicitly
shown in Fig. 17.

Contrast normalization (the divisive nonlinearity) appears in
Fig. 17 as a normalization pool (upper right oval) that exerts influ-
ence on the signal channel. This normalization pool can include re-
sponses from many channels.

Contrast comparison (the subtractive nonlinearity) also appears
in Fig. 17. Its input–output function (as in Fig. 14) is shown as Part
2 of the abstract model, and there is also a comparison pool (upper
left oval) the output from which is integrated to determine the
comparison level. The comparison level in any one channel might
depend not only on its own stimulation but also on the contrast
stimulating other channels. The comparison pool in the figure al-
lows for this possibility, but there is no evidence for it yet.

Parts 1 and 3 are abstract in the model of Fig. 17. One concrete
model for all 3 parts of the channel is given in Graham & Wolfson,
2007. That concrete version of a channel is like an FRF process ex-
cept that instead of a simple rectification-type function R there is
the machinery of the contrast comparison.

To explain the fact in experimental results that there is only
partial loss of information about sign of a change (e.g. the notch
in many panels of Fig. 16 does not dip all the way down to 50%),
any number of modifications of the model in the top half of
Fig. 17 would undoubtedly work. The modification used here is
to assume pairs of channels where the two members of a pair
are identical except the input–output functions of the contrast-
comparison process are shown in the bottom of Fig. 17. The func-
tions are intermediate between a half-wave type and a full-wave



Fig. 17. Top: Diagram from a model containing both contrast normalization and contrast comparison. L(x, y, t) is the luminance at each position in space and time. O1(x, y, t),
O2(x, y, t), and O3(x, y, t) are the outputs of the three parts of the channel. The output of the comparison pool (upper left) sets the contrast-comparison level z in Part 2 of the
channel. The output of the normalization pool (upper right) divides the output from Part 2 of the channel. Parts 1 and 3 of the channel could both be linear filters as in an
ordinary FRF process. Bottom: Diagram of the pair of input-output functions at the contrast-comparison stages in a pair of otherwise identical channels. The ‘‘On’’ channel
responds to increases in contrast more than to decreases. The ‘‘Off’’ channel does the opposite.

Fig. 18. Equations derived from the model shown in Fig. 17. Fitted predictions from these equations are the solid lines in Fig. 16.
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rectification, and one member of the pair is more sensitive to in-
creases in contrast (the ‘‘On’’ channel) and the other more sensitive
to decreases in contrast (the ‘‘Off’’ channel). Further, to fit other de-
tails of the experimental results, each half of each input–output
functions needs to be slightly accelerating upward (as shown)
rather than being a straight line.

The Weber-law behavior in the experimental results (Fig. 16) for
average test contrasts far from the adapt contrast (in either
direction) can be easily explained by adding contrast normalization
to the model as in the previous section (Addition 2). It is necessary
to assume that channels other than the channel at issue contribute
to the normalization (e.g. Graham, Beck, & Sutter, 1992). Or, to put
it another way, the normalization pool in Fig. 17 must contain other
channels than the channel itself to predict the experimental
results.

One of the advantages of relatively abstract models with parts
which can themselves be represented by relatively simple equa-
tions is that often they can then be used to generate simple
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equations that describe the joint action of many channels (units)
and thus of an observer. The abstract model of Fig. 17 containing
contrast comparison and normalization is an example of this
advantage. As it turns out, it can generate the simple set of equa-
tions shown in Fig. 18. These equations were used to compute
the predictions (solid lines) in Fig. 16.

The predictions are an excellent fit not only to the overall
shapes of the curves but also to differences among the curves for
different adapt contrasts. Individual differences between observers
are predicted as well. Some more information about the deriva-
tions of these equations and their fit to experimental results is gi-
ven in Appendix C.

An aside about static vs. dynamic modeling. The equations above
are all static equations: they do not contain any explicit modeling
of time that would allow predictions for arbitrary time-courses of
visual stimulation. Instead the dynamic properties of the visual
system are only represented implicitly by the differing locations
of the comparison level depending on recent history and by the
approximation of spatiotemporal filters with purely spatial filters.
3.4. Several further references

We know of several other studies in the literature that differ in
important ways from the experiment and results in Figs. 15 and 16
but that are nonetheless suggestive of a subtractive comparison
from moment to moment (Heeger & Ress, 2004) or something like
a contrast-comparison process including both contrast subtraction
and rectification (Kachinsky, Smith, & Pokorny, 2003; Zenger-
Landolt & Koch, 2001). These are discussed further in Wolfson
and Graham (2009).

What the physiological substrate might be for the contrast-
comparison process is unclear at this time. Of possible relevance
is a human fMRI study demonstrating that in V4 (but not earlier
areas) the response to contrast decreases is of the same sign as
the response to contrast increases (Gardner et al., 2005). The dura-
tion of patterns in the fMRI study are very different from those in
the psychophysical straddle-effect studies, however, so caution
should be maintained about any analogue.
Fig. 19. Arrangements of stimuli used to study non-classical receptive field
phenomena.
4. Addition 4. Non-classical receptive fields (including surround
suppression and facilitation, cross-orientation or overlay
inhibition)

The preceding two sections (Additions 2 and 3) concentrated on
the intensive characteristics of neurons and units (the magnitude
of response as a function of input). We return here and in the sec-
tion after this (Addition 5) to the question of spatial characteristics.

The receptive field of a neuron was defined earlier as all posi-
tions on the retina at which stimulation will directly evoke a re-
sponse. For the classical V1 simple cell the receptive field could be
modeled as a linear filter (an adding and subtracting device) fol-
lowed by a half-wave rectification (to account for the fact that
the rate of spikes could never go below zero). This earlier model
is referred to as the classical V1 receptive field to avoid possible con-
fusion with a more general notion of receptive field we are about to
discuss – that of the classical receptive field with an additional
non-classical surround enlarging it and/or non-classical processes
spatially juxtaposed with it.

The classical receptive field of a V1 simple cell is very small rel-
ative to the distances over which visual perception has to function.
Indeed, the classical receptive field is typically composed of only a
few inhibitory and excitatory sub-sections (like those sketched in
the figures up to this point). Or, in other words, the classical recep-
tive field has a width of only 1 to 3 periods of the cell’s preferred
spatial frequency.
Anything that is not predicted by the earlier model could be re-
ferred to as a non-classical response, but the typical non-classical
response talked about at present is a response to one pattern that
is affected by the simultaneous presentation of a second, adjacent
pattern where the second pattern, alone, does not produce a re-
sponse. These non-classical responses of V1 simple cells can occur
over a substantially larger area than the classical receptive field.
This is one reason that non-classical receptive fields are now fre-
quently invoked in explanations for perceptual phenomena.

Non-classical receptive fields of V1 cells were first described
more than 25 years ago. (Carandini, 2004 credits Levick, Cleland,
& Dubin, 1972 with first using the name ‘‘suppressive field’’ for
some of these non-classical characteristics.) But their exploration
has been much more extensive in the last couple of decades of
physiological research (e.g. Jones, Grieve, Wang, & Sillito, 2001;
Levitt & Lund, 1997; and see bibliographies of the model-containing
papers described below for many more). Further, these non-classical
receptive fields have been invoked to account for a number of
psychophysical phenomena as well (see references below and their
bibliographies).

The top panel of Fig. 19 sketches typical stimuli used to explore
– both physiologically and psychophysically – non-classical effects
coming from the surround outside the classical receptive field. The
test pattern (middle column) is smallish and centered on a classical
receptive field. The mask pattern (left column, top panel in figure)
is offset from the test pattern in such a way that it does NOT stim-
ulate that classical receptive field. The physiological or psycho-
physical response is measured both when the test pattern is
presented by itself (middle column) and when it is presented to-
gether with the mask pattern (right column).

The assumption that the test pattern is centered on a classical
receptive field is supported straightforwardly when studying sin-
gle neurons. In psychophysical experiments the observer’s re-
sponse always reflects responses from many units, so the
assumption of centering is supported by the following argument.
One unit (or a small group of very similar units) is assumed to be
the unit most sensitive to the test pattern and therefore the
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primary determiner of the observer’s response. That unit (or small
group) has a receptive field at the position of the test pattern.

The typical effect of a surround stimulus is to suppress the re-
sponse to the center stimulus, and the suppression is strongest
when the spatial frequency and orientation of surround and center
stimuli are similar. Hence surround suppression is a frequently-used
term. Two early studies showing such suppression in psychophys-
ical experiments (with masks flanking a test of the same orienta-
tion as in top row of Fig. 19) were Rogowitz (1983) and Ejima
and Miura (1984).

In addition to the possibility of non-classical suppressive (or
facilitatory) effects from outside the classical receptive field, there
is also a possibility that the same non-classical effects extend inside
the classical receptive field. And perhaps there are different non-
classical processes that exist inside the classical receptive field
but not outside. Evidence regarding this possibility of a juxtaposed
or overlaid process can be investigated by using mask patterns of
approximately the same size and location as the test pattern (as
in the bottom panel of Fig. 19).

The exact features of non-classical inhibitory and facilitatory ef-
fects are now known to depend not only on the stimulus character-
istics represented in Fig. 19 but on many other parameters of
pattern vision (retinal location, exact distance between the mask
and test, spatial frequency content of each of mask and test, tem-
poral frequency content, color content, dichoptic vs. binocular vs.
monoptic, etc.). And this is true in both V1 physiology (see, e.g.,
Carandini, 2004; Cavanaugh et al., 2002; Webb, Dhruv, Solomon,
Tailby, & Lennie, 2005) and as inferred from human psychophysics
(e.g. see Meese, 2004; Petrov, Carandini, & McKee, 2005; Snowden
& Hammett, 1998; Yu, Klein, & Levi, 2003). As in previous sections,
however, none of these dependencies will be described here in de-
tail. Many appropriate references can be found in the bibliogra-
phies of the references given here.

4.1. How are these non-classical effects explained and modeled?

The next figure (Fig. 20) illustrates two of the possible non-
classical V1 effects that have been documented in the physiological
and psychophysical literature. The two floating squares in a panel
represent the same area in the visual field. The classical receptive
field of the neuron being studied is shown in the bottom floating
square of each panel, and it has the classical arrangement of an
excitatory center and inhibitory side flanks. The classical receptive
fields of the neurons exerting the suppression are shown in the top
floating square of each panel. Cross-orientation overlay suppression
from superimposed test and mask stimuli of perpendicular orien-
tations is shown in panel A, and surround suppression from non-
superimposed test and mask stimuli of the same orientation is
Overlay suppression from
perpendicular orientation

(cross-orientation suppressio

A

Fig. 20. Interpretation of suppression phenomena in V1 in terms of intracortical inhibit
neurons with overlapping receptive fields and different preferred orientations. B. Surrou
receptive fields and similar preferred orientations. (With slightly expanded labeling from
shown in panel B. Although both panels here show inhibitory (sup-
pressive) effects, facilitatory effects have also been suggested.

An aside about terminology: Many terms are used with slightly
different meanings in the vision literature. The same term can
sometimes mean an effect in empirical results, sometimes a pro-
cess to explain such an effect, sometimes the experimental proce-
dure that produces the effect, and sometimes still other concepts.
Light adaptation is one common example of such term. And sur-
round suppression is one (but not the only) in this review. I have
tried to be clear at each point I use such a term. I have undoubtedly
failed.

Existing attempts to explain these suppressive and facilitatory
effects can be roughly characterized in terms of 2 characteristics
that we discuss in turn.

4.1.1. Lateral (e.g. intracortical) connections or feedback connections
One of the major characteristics distinguishing the explanations

of these non-classical effects is whether they assume the effects
are primarily due to lateral connections (e.g. intracortical excita-
tion or inhibition) or primarily due to feedback connections.

This distinction is illustrated in the contrast between Fig. 21 (an
explanation based on lateral connections) and Fig. 22 (an explana-
tion based on feedback from higher areas). See legends for more
details.

These two figures were from a study of single V1 neurons, but
the distinction can easily be invoked for psychophysics as well
by considering generally top-down effects of various sorts.

4.1.2. Simple equations or large-scale numerical computer simulations
Some explanations are simply verbal accounts of possible

mechanisms. These verbal explanations are often very valuable in
the initial studies of any scientific question. The study of vision is
far enough along, however, that developing more rigorous expla-
nations – models – is often possible. Models themselves can be
of very different flavors as illustrated here with brief discussions
of two published models of non-classical receptive field effects.
Both models address whether suppression is divisive or subtrac-
tive, and both address whether suppression arises from intracorti-
cal, lateral connections or feedback from higher visual areas. The
models differ in their complexity: one model examines the steady
state (of either behavior or of neuronal firing) using relatively sim-
ple computational stages expressed as simple equations; the other
is elaborate and reductionist, incorporating anatomical and bio-
physical facts about many neurons requiring large-scale numerical
computer simulations.

The example of the simple-equations abstract-model approach
is from Cavanaugh et al., 2002. (This is the paper from which
Fig. 13 was taken. A later paper from the same lab produced Figs. 21
n)

Surround suppression
from iso-orientation

B

ion. A: Cross-orientation suppression might be explained by inhibition between V1
nd suppression might be explained by inhibition from V1 neurons with displaced

Fig. 8, Carandini, 2004, with permission MIT Press.).
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Fig. 21. Possible circuit for iso-orientation surround suppression in V1. The target
neuron (left triangle) receives inhibition from a nearby neuron (large filled circle)
that is driven by excitatory neurons displaced laterally in cortex (three triangles at
right) that have orientation tuning similar to the target cell. Preferred stimuli
confined to the classical receptive fields for three excitatory neurons are indicated
by the circular patches of sinusoidal grating shown on the tilted plane that
represents a two-dimensional visual field. Block Arrows extending vertically from
the stimuli (grating sketches) to the neurons (triangles) indicate localized feedfor-
ward inputs to the excitatory neurons. Figure and legend modified from Fig. 1 of
Bair, Cavanaugh, and Movshon (2003).

V1
slow

Extrastriate cortex

Fig. 22. Cells (triangles) in V1 (bottom gray box) project via fast axons (arrows) to a
higher visual area (top gray box) where neurons have larger classical receptive
fields created by convergent input. If cells from the higher area project back (dotted
line) directly or indirectly to local inhibitory neurons in V1 (black circle) then
suppression from far regions of the surround could arrive on target cells in V1 with
little additional delay compared with suppression from the near surround.
Figure and legend modified from Fig. 8 of Bair et al. (2003).
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and 22 as well.) This model extends previous work on divisive sup-
pression (e.g. Carandini et al., 1997; Chen, Kasamatsu, Polat, &
Norcia, 2001). This allows them to write simple equations like
those shown elsewhere in this article. These equations depend
on very few parameters and the input is simply represented often
as just two contrast values – that of the test pattern and that of the
mask pattern. They then compare these equations to the results.
For their results, surround suppression was best described as a
divisive change in response gain (Cavanaugh et al., 2002).

A dramatic contrast to this simple-equations model can be
found in a very large-scale neural model (McLaughlin, Shapley,
Shelley, & Wielaard, 2000; Wielaard & Sajda, 2006). This model de-
pends both on analytic work and on extensive computation and
explicitly computes the activity of many neurons. This is a reduc-
tionist model that tries very carefully to represent in each model
neuron as much detail as possible based on anatomical and phys-
iological studies at a somewhat sub-neuronal level. For the V1
model, it incorporates the known lateral connections in detail. It
also models the dynamics not just the steady state. The output
from each of many neurons is a spike train that is realistic in its
probabilistic as well as deterministic properties. There is nothing
simple or transparent about this large-scale model of V1 cells,
however. Understanding why it produces any particular prediction
becomes an investigation in itself. I find this a drawback. One thing
that is desirable from a theory is that it provides a way for human
thought to encompass the phenomena and understand their impli-
cations. On the other hand, a complicated reductionist model is
impressive when it predicts phenomena that were not built into
it. And this model successfully predicts non-classical receptive-
field phenomena including surround suppression. The successful
prediction by the model depends on the lateral connections in
V1, and it does NOT depend on any feedback from later stages. Lat-
eral connections in a dynamic model like this have indirect effects,
so that effects can extend over distances substantially longer than
one connection length if sufficient time has elapsed.

4.2. At the boundary between this section and the next

This section (Section 4, on non-classical receptive fields) and the
next (Section 5, on contour integration) overlap in a number of
ways, but perhaps in no way more than in the studies using the
stimulus configuration shown in the top two rows of Fig. 19 where
the test pattern is a Gabor patch and the mask is two Gabor
patches, one on either side of the test. This configuration has been
well studied, particularly in psychophysics. A great deal of work of
this sort was done by or inspired by Polat and Sagi and their col-
leagues (e.g. Chen et al., 2001; Polat & Sagi, 1993, 1994; Sterkin,
Yehezkel, Bonneh, Norcia, & Polat, 2009). These studies are fre-
quently interpreted as giving information about the properties of
cortical lateral connections (as in the model Fig. 21, and also the
large-scale neural model just discussed). And thus these studies
belong in this section on non-classical receptive-field mechanisms.

On the other hand, these studies also belong in the next section
(on Addition 5, see especially the Section 5.1.3 on Contour integra-
tion explained by association fields). Particularly when the configu-
ration in the middle row of Fig. 19 is used (when patches are of
same orientation and are in a line), the results tend to show facil-
itation. This facilitation is then frequently discussed as part of the
process that allows us to perceive contours, e.g., to see a contour as
continuous even if parts of it are occluded.

4.3. A sample of further references

Color-selective influences from outside the classical receptive
field, e.g. surround suppression, have been seen in single neuron
recordings in V1 and higher levels. See Foster (2011) and Shapley
and Hawken (2011).

Empirical and theoretical relationships between surround sup-
pression and second-order mechanisms are explored in an fMRI
study of human cortex (Hallum et al., in press).

Surround suppression may be a general computational principle
at many levels of the visual system. For example, it has been re-
ported for singe-neuron recordings in the lateral intraparietal area
(LIP), an area that is often described as forming a priority map
directing attention and eye movements (Falkner, Krishna, & Gold-
berg, 2010). Also see Carrasco (2009).

A recent large psychophysical study measuring the effects of
flankers on several psychophysical tasks in human observers with
normal vision and human observers with amblyopia – as well as
references to a wide variety of previous literature – is reported in
Levi and Carney (2011).
5. Addition 5. Contour integration

I suspect the intuition that contours are important for percep-
tion has existed in humans for tens of thousands of years. It is dif-
ficult to believe, for example, that the outline animal figures in the
stone-age cave paintings (e.g. search the web for Peche Merle,
France, to see some done 15,000–25,000 years ago) were done by
someone without such an intuition. We do not yet understand
how the visual system discovers and processes the contours. Over
the last 25 years, however, there has been substantial development
of possible ideas.



Fig. 23. Left part. There is a horizontal line of aligned squares in the top panel, and a horizontal line of misaligned squares in the bottom panel. Example of pattern used in
Beck et al. (1989). Right part. The curve of Gabor patches in the left image is repeated in the right image but other distracter Gabor patches are added. Based on Fig. 3 of Field
et al. (1993).

1416 N.V. Graham / Vision Research 51 (2011) 1397–1430
Fig. 23 shows two of the visual patterns that have been used in
the experimental study of contour integration. Each pattern is
composed of many elements, and one subset of the elements lies
along a path (a contour) while the others are randomly scattered
around that path. In the left panel the elements are solid black
squares (Beck, Rosenfeld, & Ivry, 1989). In the right side of the fig-
ure the elements are Gabor patches (Field, Hayes, & Hess, 1993).
The characteristics of the elements are often varied – e.g. in orien-
tation or spacing – in an attempt to find out what influences the
ease with which the human observer can see the contour.

Much of the research on contour integration was influenced by
the Gestalt ideas about perceptual grouping, and how such ideas
might explain our perceptual ability to see what pieces of a contour
belong together even when intervening regions of a contour are
obscured. The research was also influenced by work in computer
science and, in particular, by attempts to develop computer algo-
rithms that could make different points along the length of a
curved edge cohere and compare the outputs of the algorithms
to perceptions. References to these earlier influences can be found
in the bibliographies of Beck, Rosenfeld, and Ivry (1989), Field et al.
(1993) and Prins, Kingdom, and Hayes (2007).

5.1. Possible processes for contour integration

Ideas for explaining contour integration vary among them-
selves. And they overlap with all of the preceding ideas. Some over-
lap with higher-order processes (in Addition 1); others incorporate
well-specified contrast nonlinearities (and thus overlap with Addi-
tions 2 and 3); and still others invoke interactions across spatial
positions resulting from lateral connections as in non-classical
receptive fields (and thus overlap with Addition 4).

5.1.1. Contour integration as higher-order processing
Fig. 24 illustrates two suggestions made for contour perception.

Both models include two stages and are thus analogous to the
second-order processes of Addition 1. But the suggestions in Fig. 24
have a slightly different flavor than typical examples of higher-order
processes, at least in my reading. Underlying these two suggestions
in Fig. 24 there seems to be an idea of actively finding a contour
rather than just a notion of describing a fixed entity that could
be a general-purpose processing tool. (For example, is there a fixed
entity for every degree of curvature? Or is it more actively formed
when there is a curve in the field?) I may well be wrong in my
reading of particular examples. But even if I am right, the general
point holds that higher-order mechanisms like those of Addition
1 may be a possible piece in solving the puzzle of how we see
contours.

Lets look briefly at the two examples of Fig. 24 more closely.
Both these suggestions suppose that pieces of contour are first
sensed by simple linear units, that is, by units described by the
classical V1 cell model. And then the pieces are put together non-
linearly by a second stage that has a larger spatial reach. In the top
diagram of a border-detecting mechanism, the non-linear process
operates between two different phases of local unit at each posi-
tion and then along the length of a number of local units (from
Shapley & Gordon, 1985). The bottom diagram is a schematic used
to argue that the information from the various orientations of sim-
ple linear units along a curve is sufficient to tell later stages about
the curve (figure from Prins et al., 2007, based on ideas of Wilson
(1985) and Wilson and Richards (1989)).

5.1.2. Contour integration explained by association fields
Fig. 25 shows a diagram of a suggested process, an association

field. (This comes from the Field et al., 1993 study that used the
Gabor-patch contours in the right part of Fig. 23.) These investiga-
tors hypothesized that an association field integrates information
across neighboring first-stage linear units tuned to similar (but
not necessarily) identical orientation. The top panel in Fig. 25
shows the constraints specifying which Gabor patches in the field
at different positions can be associated. The bottom panel shows
the specific relationships allowed between the orientations of
associated patches at different relative positions. The solid lines
indicate orientation–position relationships that lead to ‘‘associa-
tion’’ and the dotted lines indicate relationships that do not lead



Fig. 24. Top panel. Diagram of a border-detecting mechanism. Outputs from local contrast-sensitive units sensitive to one polarity are summed in a non-linear manner with
those from local units of opposite polarity. (Each local unit is shown as a collection of four boxes, two marked + and two marked �. The non-linear summation may be
absolute value, square, etc.) There is also non-linear summation along the length of the border detector’s receptive field, and thus a border detector’s receptive field is longer
than that of individual local detectors. Diagram from Fig. 4 of Shapley & Gordon (1985). Bottom panel. A diagram from Fig. 9 of Prins et al. (2007) of a curvature processing
model from Wilson (1985) and Wilson and Richards (1989).

Fig. 25. Diagram of an association field. The top panel represents the rules by which
the elements in the association field are associated and segregated from the
background. The bottom panel represents the specific rules of alignment. The solid
lines indicate orientation–position relationships that do lead to ‘‘association’’, and
the dotted lines indicate relationships that do not lead to ‘‘association’’. These
relationships are those suggested by the experimental results. Based on Fig. 16 of
Field et al. (1993).
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to ‘‘association’’. While not explicitly represented in this figure, the
authors expect the association field to show dependence on
parameters other than orientation and position, e.g. spatial fre-
quency. This diagram represents the connection pattern for one
unit (neuron) and every unit has this same connection pattern suit-
ably translated and rotated.

The authors speculate about possible physiological mechanisms
and also about the relationships of this idea to existing computa-
tional models of curve extraction. In so doing, they make further
suggestions about the possible nature of the association-field
process. One suggestion is that long-range lateral connections in
primary visual cortex (known to exist anatomically and physiolog-
ically) could be considered as a possible basis for the associations.
As the authors point out, however, it is not clear whether the ana-
tomical/physiological connections in V1 have the right properties
to be the substrate for the hypothesized association field based
on psychophysical results. More abstractly, their suggestion can
be interpreted in terms of possible lateral connections among enti-
ties that are not necessarily in V1.

The example model we look at next is one that specifies many
details of the lateral connections, and is used to calculate detailed
predictions. This example is a model published in 1998 that took
the increasing body of physiological and anatomical data on V1
available at that time, and incorporated this information into an
elaborated model that included temporal dynamics as well as spa-
tial position (Zhaoping, 1998).

Predictions were calculated to see how well the model could ac-
count for perceptual phenomena (e.g. contour integration) where
the features of the neurons in the model that were based on avail-
able physiological data were kept constant, but other features were
allowed to change. These fits of predictions to perceptual results
led to two kinds of conclusions, one of which is of more concern
to us here – namely, a conclusion about the extent to which pro-
cesses of the kind found in V1 could serve as an explanation for
perception. (The other kind of conclusion – beyond our scope here
– is making predictions of physiological results not yet found by
using constraints on the model produced by fitting it to perceptual
phenomena.)
This model incorporates initial processing by linear units with
orientation-selective receptive fields, and then has further process-
ing by a network of recurrently-connected excitatory and inhibi-
tory neurons. These lateral recurrent interactions modify initial
activity patterns. The modifications selectively enhance activity
that forms smooth contours in the image.



Excitatory lateral connections Inhibitory  lateral connections

Original 
Image

Output from
model

Partway through 
processing

Fig. 26. Top part: The diagrams at the left show the excitatory (top left) and inhibitory (top right) lateral connections from one unit in the model (the unit at the center of each
diagram) to all other units. The orientation and spatial location of a symbol represents the orientation selectivity and spatial location of the unit receiving the excitation or
inhibition from the center unit. The boldness of the symbol represents the strength of the connection between that unit and the center unit. Bottom part: Some steps in the
processing of an image by the model. Illustrations are adapted from Zhaoping (1998) Fig. 4 and Fig. 5.
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The lateral connections are diagrammed in the top of Fig. 26
with the excitatory connections on the top left and the inhibitory
connections on the top right. The orientation of each little symbol
in these diagrams reflects the orientation preference of the unit at
that location and the boldness of each little symbol reflects the
strength of the connection. These diagrams represent the connec-
tion pattern for one unit only, but every unit has this same connec-
tion pattern suitably translated and rotated. The excitatory
connections in Fig. 26 top left clearly resemble that of the associa-
tion field in Fig. 25, and the inhibitory connections have the same
arrangement but rotated 90�.

The predictions of this model are illustrated in the bottom of
Fig. 26 by three images: The left one shows the original photo-
graph. The middle one shows the response of the model at an inter-
mediate stage in the processing. (White is the background showing
places of zero response and gray to black indicates the magnitude
of non-zero responses.) The right image shows the model’s final
output. In the model’s final output most of the long extended con-
tours were discovered and enhanced even when originally of very
low contrast. For example, the weak contours at the chin and the
top of the hat (and many noisy edges) are originally sub-threshold
but many of them are well preserved at the model’s output as a re-
sult of the lateral connections. (Finding such contours may be
important for visual object formation even if the contours them-
selves are not salient in perception.) Further, the model’s predic-
tions would presumably be even better if the model were
modified to contain more than a single spatial scale. For example,
if the model included a range of units of different spatial-frequency
preference it would correct some of the fine details like those
around the eyes in the photos and perhaps help rescue the long
weak contour at the brim of the hat above the eyes. (Introducing
multiple spatial scales can still be expensive in terms of computing
time and was more so at the time this model was published.)

The success of the model in carrying out predictions is valuable
at least as a partial validation of the qualitative kind of idea pre-
sented by Field et al. (1993). More generally, it is evidence (beyond
one’s intuition) that lateral connections can indeed produce con-
tour integration. This model is, however, very complicated, con-
taining many parameters that were not even mentioned here.
This complexity has drawbacks. For example, one would need to
examine rather closely the effects of varying the many parameters
to be sure that the work was really being done by the association-
field like pattern of connections and not by fine-tuning the quanti-
tative predictions of other features of the model.

5.1.3. Contour integration explained as dynamic cooperative activity
Many recent investigators have been attracted by the notion that

the perception of contours and boundaries must require requiring
dynamic developing cooperative activity among hosts of neurons.
Two of the models we have already mentioned (Wielaard & Sajda,
2006; Zhaoping, 1998) incorporate some such features. There are
other models or verbally expressed ideas that seem beyond the gen-
eral framework of this review. They are substantially more compli-
cated and have not been as rigorously compared to either
physiological or psychophysical empirical results as the bulk of ideas
mentioned here. On the other hand, to not mention such models at
all seems unreasonable when talking about current ideas about con-
tour perception, since such models may prove valuable, and so here
are two examples: Thielscher and Neumann (2007) present a model
inspired by the extensive work of Grossberg and Mingolla and
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colleagues; Legendy (2009) attempts an abstract understanding of
how brain circuits might compute what needs to be computed in
order to do shape processing in visual perception.
5.2. A sample of further references

Section 4.2 (called At the boundary between this section and the
next) gives several references that are relevant here for Addition 5
as well as previously for Addition 4.

A recent review (Roelfsma, 2006) presents and discusses con-
tour integration from the perspective of perceptual grouping, and
references a wide variety of behavioral and physiological results
as well as a model of them somewhat different from those pre-
sented here.

For a study of synchronous activity in visual cortex for collinear
and cocircular contours see Samonds, Zhou, Bernard and Bonds
(2006).

For a study on the development of contour integration (in ma-
caques) see Kiorpes and Bassin (2003).

The perception of shape in smooth and jagged contours and its
implications for understanding the filtering (including FRF filter-
ing) of contours is studied by Prins et al. (2007).

An example of investigation into the spatiotemporal properties of
contour integration can be found in the following articles: Dakin and
Hess (1998, 1999) published results indicating the contour integra-
tion mechanism was very limited with respect to spatial frequency
tuning, but Persike, Olzak, and Meinhardt (2009) recently published
evidence that as long as the frequencies were within 2 or so octaves
apart, there was only a very tiny impairment of performance, and no
impairment at all at separations of 1.25 octaves.

Recent explorations of contour integration – and the role of
occlusion in it – using illusory contours can be found in Maertens
and Shapley (2008).

The problem of finding the contours in a scene even when they
are partially occluded (as in Fig. 26) easily generalizes to the prob-
lem of finding the surfaces in the scene even when they are par-
tially occluded. See Caputo (1996) and Wolfson and Landy (1999)
for exploration of this problem with an psychophysical experimen-
tal paradigm that implicates interaction across quite long distances
in human perception.
6. Summary

We now have more ideas than we did 25 years ago about the
hidden stages of the visual system – the intermediate stages far
from the image on the retina and far from the visual system’s out-
put in perception or action – and, in particular we have more ideas
about the intermediate stages’ processing of visual patterns.

This review briefly presented processes that have been sug-
gested and studied in the last couple of decades, processes that
are additions to the simple multiple-analyzers model based on lin-
ear filters (on the classical model of V1 simple cells). They were
presented in five categories:

1. Higher-order processes (including FRF structures).
2. Divisive contrast nonlinearities (including contrast

normalization).
3. Subtractive contrast nonlinearities (including contrast

comparison).
4. Non-classical receptive fields (including surround suppression

and facilitation, cross-orientation or overlay suppression).
5. Contour integration.

These hidden stages can be difficult to study. They are far from
the input (which we can control) and far from the output (which is
relatively easy to study through direct report or responses in
psychophysical experiments, or through measurement of actions
dependent on visual information). But these hidden stages form a
large part of the visual system. And I think it will probably be worth
the effort to learn more about them. I suspect that understanding
these stages is going to be necessary for anything approaching a sat-
isfactory understanding our own visual systems. And I suspect also
that understanding them will be very important in making progress
on important practical applications. It seems unlikely that we can
make software or hardware see or perceive as humans do when, in
fact, we are missing huge amounts of knowledge about how existing
human (or similar) visual systems see and perceive. In the search for
more understanding of these hidden stages, the five categories of
processes listed above seem promising.

7. Glossary of terms

The glossary contains terms of several kinds. At one extreme are
technical words with a well-established meaning that many read-
ers may know. They are not defined in the text at all but are de-
fined here for the benefit of readers who do not know them.

At the other extreme are terms that do not have well-estab-
lished meanings at all. They are still vague or fuzzy because they
are an attempt to label concepts that are still developing. These
are defined in the text briefly and repeated in the glossary both
to help a reader encountering the term in another place in the text
and (sometimes) to add other material that seemed better here
than in any one place in the text.

All these terms are in italics at their first presentation in the
main text. (Note, however, there are many other words in the main
text that are italicized because they were names of other sections
in the review, or for momentary emphasis in a discussion, or for
other conventional reasons, but that did not seem useful to repeat
in the glossary.)

7.1. Analyzer

The word ‘‘analyzer’’ as used here is a general concept that in-
cludes any entity sensitive to a range of values along some dimen-
sion of interest. Dimensions along which analyzers have been
postulated in pattern vision include orientation, spatial frequency
(crudely size), spatial position, direction of motion and many oth-
ers (reviewed in Graham (1989)).

7.2. Association field

See Section 5.1.2 and Fig. 25.

7.3. Buffy adaptation

An informal name originally used by Graham and Wolfson
(2007) for a result found in psychophysical experiments, the result
that is called the straddle effect here. The same term was also used
for the process that is called the contrast-comparison process here.
(The name came from Buffy the Vampire-Slayer for reasons de-
scribed a bit more in Graham & Wolfson, 2007.)

7.4. Channel

This word in general has been used to mean a set of units where
the set is homogeneous in some sense. For example, if you let all
units with peak sensitivity to a particular orientation (e.g. oblique
right, regardless of their spatial position, spatial frequency, etc.) be
a channel, this set of units could be called an orientation-sensitive
channel having peak sensitivity to oblique right.
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In one very common use, the set of units comprising a channel
would have receptive fields that were distributed densely across
the retina but were otherwise identical (e.g. they had the same
shape excitatory and inhibitory sections so they were sensitive to
the same range of spatial frequencies and orientations). In this
usage, a first-order channel is identical to a filter as defined here
(a linear, translation-invariant system) and has been called by a
number of other names as well, including a Fourier mechanism
and a simple channel.

An FRF structure as defined here has identical receptive fields at
all places in the visual field and thus is an example of a second-
order channel.

7.5. Classical V1 simple cell (classical V1 receptive field)

This term classical V1 simple cell is to be distinguished from sim-
ple cell, which refers to a broader category that includes all cells
that would be called simple cells by the common criteria of phys-
iologists. The term classical V1 simple cell refers to an entity that be-
haves like the original Hubel & Wiesel descriptions of simple cells
in the cortex. Namely, it refers to a linear system (an adding and
subtracting device) followed by a half-wave rectification. See fur-
ther discussion in Introduction in main text. The receptive field of
a classical V1 simple cell has elongated excitatory and inhibitory
regions. See more discussion at beginning of text Section 4.0 called
Addition 4: Non-classical receptive fields.

A caution in reading past literature: The phenomena we are call-
ing NON-classical V1 cell phenomena include only effects that can
NOT be modeled by a classical V1 cell model (a linear system fol-
lowed by a half-wave rectification). Occasionally in the past litera-
ture, however, any non-linear effect at all (even if it could be
accounted for by the half-wave rectification) was talked about as
if it required additions to the classical V1 simple-cell model.
Neglecting the implications of the assumed (if sometimes implic-
itly) rectification seems to have happened particularly when the
rectification occurred not at the exact balance point between inhi-
bition and excitation but was biased one way or the other.

7.6. Comparison level, comparison pool, comparison process

See Figs. 14 and 17 and surrounding text.

7.7. Complex channel

The term used by Graham, Beck, Sutter and colleagues for what
is here called a second-order process.

7.8. Contrast

The word contrast can be technically defined in a number of dif-
ferent ways for different applications. In this article it is used to de-
scribe a property of visual patterns. Its default definition here is the
difference between the peak and trough (maximum and minimum)
luminance in the pattern divided by the mean luminance in the
pattern. Some studies described here have defined it in slightly dif-
ferent ways, but for purposes of understanding this chapter, the
default definition just given should be sufficient.

7.9. Contrast-gain change

See table in Fig. 8 and accompanying text in Section 2.1.

7.10. Contrast comparison

See table in Fig. 8 and accompanying text in Section 2.1. Also
called Buffy adaptation.
7.11. Contrast normalization

See normalization.

7.12. Contrast response function

A common name for a function giving the response of some en-
tity (e.g. neuron, abstract component of a model) as a function of
contrast of the visual pattern to which that entity is responding.
See Figs. 9, 12 and 13 for examples.

7.13. Contrast subtraction

See table in Fig. 8 and surrounding text.

7.14. Decision rule

A simple rule in a model that allows the observer’s response in a
psychophysical experiment to be calculated from the outputs of
the analyzers (units, neurons, any entities of interest).

7.15. Divisive (multiplicative) contrast nonlinearity

See table in Fig. 8 and accompanying text in Section 2.1.

7.16. Feedback and feedforward connections

See higher and lower cortical areas (stages or levels of visual
processing, etc.). Also see recurrent connections.

7.17. Filter (linear filter, simple linear filter)

A filter here will be used to mean a linear system that has an in-
put and an output that are both functions of (x, y) or sometimes
(x, y, t). The same concept will sometimes be referred to as a linear
filter (or, for even more emphasis, as a simple linear filter). A filter-
will generally be considered to be translation-invariant although
that is not any real limitation for discussion at the level of this re-
view. (See further comments in the description in the main text of
Fig. 4).

A filter is an appropriate model for a large group of V1 classical
simple cells centered at many spatial positions densely covering
the visual field where the output of the filter at each location
(x, y) is just the output before rectification of the V1 classical sim-
ple cell centered at that position (x, y). If the receptive fields of all
the simple cells are identical in spatial characteristics (in the sizes
and orientations of the excitatory and inhibitory regions) this is a
translation-invariant linear filter.

Caution: The word filter is sometimes used in this literature to
mean the mathematical abstraction corresponding to a single clas-
sical V1 cell, to a single unit in the terminology here, instead of to a
whole collection of units.

7.18. First-order processes

First-order processes are, at their core, linear systems; but it is
important to remember that, when the term is used psychophysics,
a first-order process must necessarily accompanied by an assump-
tion relating the output of the process to the response of the obser-
ver (as in the multiple-analyzers model of Fig. 1).

7.19. Fourier, Fourier analysis, Fourier transforms

A set of mathematical theorems and methods that depend on
theorems by the mathematician Fourier and are particularly well
adapted to analysis of linear systems or of systems made up of
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linear sub-parts. Roughly, the important theorem says that there is
a way (and furthermore the way is always unique) in which any
function can be decomposed into (i.e. considered to be the sum
of) sinusoidal (harmonic) functions. For functions of two dimen-
sions of space (as in visual patterns), the components are sinusoi-
dal gratings of varying orientation and spatial frequency. The
Fourier transform can be plotted two-dimensionally (as in the
Olzak and Thomas diagram of Fig. 7). The length of the line from
the center in the diagram to a given point is proportional to the
spatial frequency of the component sinusoid represented by that
point. The angle that line makes with the positive horizontal axis
gives the orientation of that component sinusoidal grating. Review
2 of Graham (1989) is an introductory description of the dimen-
sions and use of Fourier analysis in spatiotemporal pattern vision.
One textbook that I have found useful over the years is Fourier
transform and its applications (Bracewell, 1965, 1978, 1999).

7.20. FRF structures (processes, channels) also called LNL or sandwich
systems

The F’s in FRF stand for ‘‘filter’’, and the R for ‘‘rectification’’. An
FRF process is one in which a linear filter that is characterized by
relatively small receptive fields has outputs which are rectified
and become the inputs to a second linear filter, where this second
filter is characterized by relatively large receptive fields.

It is frequently assumed that each filter in an FRF process is not
only linear but also translation-invariant (having the same recep-
tive field or weight function at each spatial position).

Notice that there must be a rectification or similar nonlinearity
in-between two stages of linear filtering, or else the two stages of
linear filters are exactly equivalent to a single linear filtering (that
has a receptive field that is a simple combination of the two filter’s
receptive fields).

FRF structures have also been known as LNL (LNL for linear–
non-linear–linear) or sandwich systems in general engineering
literature where their mathematical properties have been exten-
sively studied (e.g. Korenberg & Hunter, 1986).

In the visual literature people have also used the words second-
order channels, complex channels, and Non-Fourier mechanisms
sometimes to be synonymous with FRF structures but sometimes
(as in this article) to mean something more general which includes
but is not limited to FRF structures.

7.21. Gabor patch

Gabor patches are a very commonly used visual pattern of the
last 25 years. They look like small patches of fuzzy bars. If you mea-
sure the luminance at each point on a line perpendicular to the
perceived bars, the function giving luminance at each position will
be a Gabor function: that is, a sinusoidal function multiplied by a
Gaussian function. (The bell-shaped function which characterizes
the so-called normal probability distribution is a Gaussian func-
tion). See Figs. 3, 15 and 23 for several examples (although these
will have been distorted by the reproduction processes).

7.22. Global control of contrast gain

See Case 3 in Appendix B.

7.23. Higher and lower cortical areas (or stages, or levels of visual
processing, etc.)

It is convenient to talk in terms of higher and lower cortical
areas within visual cortex, where: ‘‘lower’’ means roughly the areas
closest to or the fewest steps away from the light stimulus (eye,
LGN, V1 are the first few large steps); and ‘‘higher’’ means furthest
from (or more steps away from, etc.) the light stimulus (e.g. areas
in the parietal and temporal lobe). It is convenient but should not
be taken to mean that there is no information flow from the so-
called higher levels back to the lower levels. Visual information
processing is definitely not a one-directional sequence of process.
The information flow from the light toward the higher levels
(respectively, in the other direction) is also referred to as upstream
(respectively, downstream), or feedforward (respectively, feedback),
or bottom-up (respectively, top-down).

7.24. Higher-order patterns

Higher-order patterns are patterns in which perceptually-
salient characteristics are not easily accountable for by models like
that in Fig. 1. Since ‘‘perceptually salient’’ and ‘‘simple decisions
rules’’ are somewhat fuzzy concepts, this is not a totally rigorous
definition.

A more rigorous definition that corresponds in many cases is as
follows: A pattern is called higher-order if it is one for which
knowledge of the power spectrum of the Fourier transform is
NOT sufficient basis to explain the observer’s performance in some
perceptual task. Knowledge of the phase spectrum is necessary.

Slightly less rigorously: a pattern is higher-order if there is
negligible energy in the Fourier transform at the spatial fre-
quency and orientations corresponding to the salient perceptual
characteristics.

See second-order patterns, second-order processes, higher-
order processes.

7.25. Higher-order processes

In this article, higher-order processes are processes which are
able to do perceptual tasks that first-order processes (linear units
– the simple multiple-analyzers model of Fig. 1) cannot do. Slightly
differently, they could be defined as processes which can perform
pattern discriminations that depend on the phase spectrum as well
as the power spectrum of the patterns. See also second-order
processes.

7.26. Hyberpolic-ratio function (Michaelis–Menten, Naka–Rushton)

See Fig. 9 and accompanying text in Section 2.2.

7.27. Linear filter

A word often used, as here, to refer to a translation-invariant
linear system where the input and output are the same number
of dimensions. For example, a filter might have as an input a visual
pattern of two spatial dimensions and as an output the neural re-
sponse of some stage of the visual system corresponding to each
spatial position in the pattern.

7.28. Linear unit (simple unit)

A linear unit is a unit that can be modeled as a linear system fol-
lowed by a half-wave rectification. (For the meaning of unit in this
article see its entry in this glossary.) The classical V1 simple-cell
model is a model of a linear unit.

7.29. Linear system

A linear system is an adding and subtracting device. More for-
mally, the most substantial part of the definition of a linear system
requires such a system to show the superposition property. A sys-
tem has the superposition property if and only if the following
holds: when there is a compound input that equals the SUM of
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two component inputs, then the system’s response to the com-
pound input must be the SUM of its two responses to a component
alone.

What SUM means in the previous sentence can vary with the
kind of system, but it has to have the same abstract properties as
summing in ordinary arithmetic. The kind of summation that is rel-
evant in this article is the point-wise summation of functions. That
is, the function R is the sum of the functions R1 and R2 if and only if
R(x) = R1(x) + R2(x) at every point x, (where + is the ordinary arith-
metic summation).

Technically, for a system to be linear, it needs a bit more than
the superposition property. It needs something that can be called
the scalar multiplication property: If (and only if) an input equals
k times another input then the response to the first input must
be k times the response to the second.

For practical purposes the scalar multiplication property gives
little more information than the superposition property. It is a
property necessary to deal with irrational numbers. But consider-
ing the superposition and scalar-multiplication properties sepa-
rately often helps a human thinker notice the important
similarities and differences between different non-linear systems.

Many parts of the nervous system can be approximately de-
scribed overall as linear systems, at least for some range of stimuli.
However, this overall linear behavior occurs in spite of the fact that
the component sub-parts each act nonlinearly; there is some sort
of compensation of one for another in such a way that the overall
effect is linear. The fact evolution produced this linearity in the vi-
sual system in spite of the complexity of doing so suggests that the
linearity itself may have desirable effects in visual perception. See
the examples and discussion in Shapley (2009).

7.30. Linear-systems analysis

The term linear-systems analysis tends to refer to Fourier anal-
ysis. More generally it refers to all mathematical and computa-
tional ways of dealing with linear systems.

7.31. Michaelis–Menten equation (hyberbolic-ratio, Naka–Rushton)

See Fig. 9 and accompanying text in Section 2.2.

7.32. Minkowski distance (power-summation, Quick pooling)

See discussion in Appendix A. It is defined in Eq. (A.1).

7.33. Naka–Rushton equation (hyberbolic-ratio, Michaelis–Menten)

See Fig. 9 and accompanying text in Section 2.2.

7.34. Near-threshold contrast

A pattern is said to be at near-threshold contrast if its contrast is
so low that it is imperfectly discriminable from a steady blank field
of the same space-average luminance.

7.35. Normalization

As used here refers to a class of quite abstract models intro-
duced by Heeger (1991) and Foley (1994) and others. No particular
physiological mechanism is implied by our use of the term here. Or
to say it another way, any mechanism that produces an output
obeying these equations is included in our meaning here. In the
general literature, however, some people use it to mean a particu-
lar physiological mechanism. For further information see
Section 2.3.
7.36. Normalization pool (network)

Set of neurons or units that exert divisive suppression via a nor-
malization network on the unit under discussion (the signal unit in
terminology here). Whether or the normalization pool should be
considered to include the signal unit itself seems to be inconsistent
from one usage to another. And there is the related question of
whether or not the signal unit does exert normalization on itself.
I try to be explicit on these matters whenever normalization pool
is used here.

7.37. Other units

Units other than the signal unit.

7.38. Pattern, pattern vision, spatial vision

Pattern here means a visual stimulus thought of as only depend-
ing on two spatial dimensions, or sometimes two spatial dimen-
sions and time. The third spatial dimension – depth – and also
color – are ignored, generally by being held constant throughout
the comparisons made experimentally or theoretically. As used
here the word pattern does NOT imply that the visual stimulus con-
tains any repetition or intended design (unlike the use of the word
in everyday English).

Pattern vision refers to any discussion of vision limited primarily
to two dimensions and neglecting color and motion.

This same concept is sometimes called spatial vision in the vi-
sual literature, and I use it here sometimes. This usage may be
unfortunate, however, since – at least in my experience – persons
outside this technical literature almost always think the term spa-
tial vision applies to the perception of three-dimensional space.

7.39. Probability summation

The term probability summation can refer to any advantage
that accrues to a decision-maker when there are multiple uncorre-
lated (although not necessarily completely uncorrelated) sources
of information. One common model of probability summation is
given at the end of Appendix A.

7.40. Point-wise nonlinearities

A nonlinearity that acts on individual points (e.g. points in a
pattern or points in the output from the filter) independent of what
is happening at other points. The word can refer to points in space
or points in time. The word instantaneous is sometimes used in-
stead of point-wise, perhaps because many of the early applica-
tions were in the time domain, e.g. AM and FM radios. See also
rectification.

7.41. Power-summation

See Minkowski distance and associated discussion in Appendix A.

7.42. Quick pooling

See Minkowski distance and associated discussion in Appendix A.

7.43. Receptive field, weighting function, impulse-response function

This word will be used both for neurons and for their more ab-
stract counterparts units. The receptive field of a neuron or unit is
the set of positions on the retina at which visual stimulation pro-
duces a response from the neuron (unit). In the language of linear
systems, one would be likely to refer to a weighting function or an
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impulse-response function. (The concepts of receptive field,
weighting function, and impulse-response function are closely re-
lated but not identical. More precise definitions can be found, e.g.,
on pp. 68–72 of Graham, 1989.)
7.44. Rectification, half-wave rectification, full-wave rectification and
their properties

The most frequent use of the word rectification is as a descrip-
tion of a piece-wise linear function (a function made up of pieces
of straight line) where the value of the function is always zero or
greater.

The most usual use of the term full-wave rectification is to name
a function where y is proportional to the absolute value of x. See
the function shown in each panel in the central column of Fig. 5
and the functions shown in Fig. 14.

The usual half-wave rectification is identical to a full-wave rec-
tification for half of the x values (either for all positive values of
x or for all negatives values of x) but equals zero on the other
half.

Sometimes the word rectification generalizes to include cases
where, rather than being a piecewise-linear function, the function
can be any non-linear function with the following condition: the
output of the function is always greater than or equal to zero.
The term full-wave rectification can generalized, for example, to
power functions where the power is an even number. An example
is shown in Fig. 4 middle panel.

The name rectification can also generalize to cases where the
center between the two halves of the function is not at zero but
at some other value (as in Fig. 14). The center point of a positive
half-wave rectification is sometimes referred to as a threshold
(since for inputs below the center point, the output of the function
is always zero).

When used in models of visual processing, rectification func-
tions are applied at each point in space and time – that is each spa-
tial position in a spatial image and/or at each moment in time. The
output of the rectification stage at any one point is always entirely
independent of what is going on at any other point in space and
time, a property that is often called point-wise or instantaneous
and sometimes called static.

(In this article we talk about rectifications functions as being
functions of one real-number variable into another real-number
variable. However, the word sometimes is applied to a function
of many variables onto many variables. It retains the characteristic
of operating point-wise in those situations.)

Why have rectification functions been so frequently used in models
of vision? There are at least two important reasons. (i) One is a
practical reason. The point-wise nature of rectifications has turned
out to make them computationally tractable (easy to deal with)
when working in the context of linear systems (as in the FRF pro-
cess). (ii) The second reason comes from physiology. When the out-
put of process under discussion is neural spikes, the number of
spikes can never be less than zero although the entity driving the
number of spikes (e.g. a slow potential) may well go far below
the value at which it first produces a non-zero response. Therefore
using a half-wave rectification at the terminal stage of the model of
such a process is often convenient. Indeed it was so obvious to
physiologists that there must be something like a half-wave recti-
fication at the final stage of a model of V1 cells, that in many dis-
cussions of those V1 cells are just referred to as linear systems,
omitting entirely even a mention of the fact the number of spikes
can never be negative.

See Morgan (2011) for some further discussion of the role of
rectifications, particularly half-wave rectifications, in modeling
spatial vision.
7.45. Recurrent vs. non-recurrent connections

Recurrent connections are connections that run in both direc-
tions between two units. Thus, after unit A has affected unit B, then
unit B can affect unit A, etc.

7.46. Response-gain change

See table in Fig. 8 and accompanying text in Section 2.1.

7.47. Response subtraction

See table in Fig. 8 and accompanying text in Section 2.1.

7.48. Second-order patterns

Second-order patterns are a subset of higher-order patterns. In one
definition, second-order patterns are higher-order patterns in which
the salient perceptual aspects (in experiments, the aspects to which
an observer must respond) are computable by FRF processes.

A different but related definition and a useful comparison to the
definition in the statistical literature is given by Johnson et al.
(2005), p. 2051:

‘‘An abundance of psychophysical and single unit neurophysiol-
ogy supports the existence of visual cortex neurons sensitive to
changes in dimensions other than luminance or color—for exam-
ple, variations in contrast, element size, or orientation—here col-
lectively termed ‘‘texture variations.’’ Such texture variations,
and the visual mechanisms that are believed to detect them, have
typically been designated as second-order in the biological vision
literature. Note that in a context of image statistics, such stimuli
might be considered fourth-order, because the detection of dif-
ferences between textures requires the comparison of at least
four image points. However, following common usage we will
refer to stimuli that vary in luminance or chromaticity (and that
minimally require the comparison of two image points) as first-
order and stimuli that vary in texture (and that require the
comparison of four image points), as second-order. Analyses of
unfiltered single points in the image (statistically speaking,
first-order) will be referred to as pixel analyses.’’
7.49. Second-order processes (channels)

In this article 2nd-order processes will mean a general category
of processes (a subset of higher-order processes) in which units with
little receptive fields (with outputs that are rectified or otherwise
nonlinearly transformed) serve as inputs for units with bigger
receptive fields. (If the second-order process is translation-
invariant, it can be called a second-order channel). This is a more
general category in this article than FRF processes.

The word ‘‘second-order’’ has been used in a number of subtly
and not-so-subtly different ways in the visual psychophysical liter-
ature. Some discussion of many related terminological difficulties
can be found in Landy & Graham, 2003. As discussed further in
the entry for second-order patterns, the use of ‘‘second-order’’ in
statistics and image processing is definitely different from that
here although related.

Related terms here in the glossary are: FRF processes, higher-
order patterns, higher-order processes, second-order patterns.

7.50. Signal unit or neuron

Signal is an adjective used here to indicate the neuron or unit
from which a response is being discussed. For example, the unit
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producing the R’s on the left side of Eqs. (1)–(3). The signal unit
might be literally a neuron being recorded from. Or it might be a
neuron (or hypothetical entity in a model) for which the response
is being inferred indirectly.

7.51. simple cell

A simple cell here is a term used to mean any V1 cell that would
be classified as a simple cell by the criteria ordinarily used by phys-
iologists of Hubel and Wiesel’s time or today. It is to be distin-
guished from a classical V1 simple cell.

7.52. simple multiple-analyzers model

The name used here for the model of Fig. 1 top panel. It is a set
of linear units – of classical V1 simple cells – followed by a simple
decision rule. See further description in text near Fig. 1. In the
pattern-vision literature it is referred to by many different
multiple-word phrases, frequently with slightly different connota-
tions relevant to the context.

7.53. Spatial vision

See entry 7.38.

7.54. Straddle effect

See Fig. 16 and accompanying text in Section 3.2.1. See Buffy
adaptation.

7.55. Subtractive (additive) contrast nonlinearity

See table in Fig. 8 and accompanying text Section 2.1.

7.56. Translation-invariant linear system

A linear system is translation-invariant if and only if: when its in-
put is shifted by a given amount, then the output is shifted by that
same amount. Or, to put it more informally for the case of interest
here, the filter is translation-invariant if and only the receptive fields
(weighting functions) at all spatial positions are identical (in, e.g.,
spatial frequency and orientation preference) except that each is
centered at a different spatial position. Also see filter.

7.57. Tuned FRF channel,

A tuned FRF channel for a given spatial pattern is one in which
the first filter has receptive fields matched to the local spatial fre-
quency and orientation in the pattern, and the second filter has
receptive fields matched to the global characteristics in the
pattern.

7.58. Unit

A unit is an abstract entity that can be used to explain behavior
and that is analogous to a single neuron. It is something that pro-
duces an output that is a function of time but not of space. Even
time can be (and is often) ignored by, for example, using the max-
imal instantaneous response, or by integrating over some time per-
iod. Words used in other contexts for what is called ‘‘unit’’ here
include: neural unit, mechanism, and detector.

7.59. Upstream and downstream

See higher and lower cortical areas (stages or levels of visual
processing, etc.).
7.60. Weber’s law, Weber-law behavior, Weber behavior

The most common form of Weber’s law to psychophysicists is
the following: the threshold DI for perceiving a change on some
intensity dimension I is proportional to the background level I
(for a large range of background intensities I). Or, equivalently,
the ratio DI/I at threshold is constant over a large range of non-zero
background intensities.

More generally, and as used here, Weber behavior is behavior
which is constant (not just at threshold but above threshold too)
if and only if the ratio of the intensities involved is constant. Or,
equivalently, Weber behavior is behavior where the determining
factor is the ratio of the intensities, not their actual values.

For the Weber behavior in results like those shown in Fig. 16,
the intensity dimension I is the absolute value of the difference be-
tween the current contrast and comparison level, or, more con-
cretely, the absolute value of the difference between the test
contrast and the adapt contrast.

7.61. Weighting function

See entry 7.43.
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Appendix A. Non-linear pooling, decision stage, variance (noise)

A.1. A convenient family of functions for non-linear pooling: Power-
summation, Minkowski distance, Quick Pooling

There is a very convenient family of functions that can approx-
imate the action of non-linear pooling occurring at a number of
places in psychophysical and physiological models. One important
such place in the psychophysical models is at the decision stage
(e.g. the decision rule in Fig. 1 or the decision-and-pooling stage
in Fig. 5). For this stage the effect of multiple analyzers’ (units’,
neurons’) outputs on the observer’s decision must be described.
Another example of this convenient family’s use is to describe
non-linear pooling among units in a normalization network as dis-
cussed in Section 2.0 on Addition 2.

This family is known by various names in related literature,
including power-summation functions, Minkowski distances, and
Quick Pooling. The beginning of this family’s use in this field oc-
curred longer ago than 25 years. To the best of my knowledge, its
usefulness was brought to the attention of investigators of pattern
vision by Mostafavi and Sakrison (1976) and Quick (1974).

This family of functions is defined in the equation below where
each member of the family is specified by a particular value of the
parameter k. This parameter k is sometimes called the order of the
function or the power or exponent of the function.

Let X and Y be two points in an n-dimensional space (which
might for example represent the responses of n different units or
channels to two different patterns), that is, let:

X ¼ ðx1; x2; . . . ; xnÞ and Y ¼ ðy1; y2; . . . ; ynÞ

Then the Minkowski distance of order k (with exponent k) between
x and y is:
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dðX;YÞ ¼
Xn

i¼1

jxi � yij
k

( )1=k

ðA:1Þ

Members of this family provide a good approximation to many
commonly used assumptions, e.g.

– the maximum-rule or winners-take-all (k = infinity),
– the city-block or Manhattan metric (k = 1),
– Euclidian distance or ordinary shortest-distance between two

points (k = 2),
– probability summation among independent entities.

A.1.1. About probability summation
As Quick (1974) pointed out, the pooling rule in Eq. (A.1) can be

derived from the following assumptions: (i) the multiple entities
are all probabilistically independent, (ii) the overall probability that
as a group they detect the stimulus is the probability that one or
more of them detects that stimulus, and (iii) the probability that
any individual entity detect the stimulus is well described by a con-
venient form known as the Weibull function. Assumptions (i) and (ii)
are known as high-threshold signal-detection theory. They also are
the most common model for the empirical phenomenon known as
probability summation: an advantage accrued when there is more
than one probabilistically-independent chance of getting an answer
correct. In practice, k = 3 or 4 is a good approximation to many
probability-summation situations in human psychophysics. Further
it is quite a good approximation to more sophisticated detection
theories. Graham (1989) Chapter 4 covers this material.

A.2. Tractability of this family of functions

Importantly, the particular construction of this family as a sum
of powers (with the sum then raised to the reciprocal of that
power) turns out to be tractable in many situations encountered
in modeling.

One very convenient property it has is the following: When
using a function in this family to nonlinearly pool over a large
number of entities, you can frequently reduce the problem to pool
over a small number of ‘‘composite’’ entities. Each of these com-
posites is formed by pooling over a subset of the original large
set, and this is usually a natural and meaningful subset. (See a
use of this on pp. 415–416 in Robson and Graham (1981); another
use can be found on p. 191 of Graham (1989)).

A.3. Use of this family

How do you use a family of functions like this if you do not have
a pre-conceived idea about what form non-linear pooling should
take? One approach is to calculate predictions using a variety of
values of k (e.g. 1, 2, 3 or 4, and infinity) and to see whether the
ability of the model to fit the data is robust against these changes
or is responsive to them. What can happen?

(i) In many situations the predictions turn out to depend very
little if at all on this exponent k (to be robust against changes
in it). In other words, the same data can be fit with any expo-
nent, and the resulting values for other parameters (e.g.
spatial-frequency bandwidth) are not much affected by a
choice of exponent. In these situations you have learned that
the other parameters estimated from the results are stable
and trustworthy. But you have also learned that the results
at issue are not sufficient to decide among different
exponents in the non-linear pooling rule. For much of the
psychophysical work on the hidden stages of visual
processing – the kinds of things discussed here – this is
the result the experimenters would be happy to find.
(ii) In some situations it turns out that NO exponent assumed
for the non-linear pooling will fit the results. In this case,
the whole structure of the model may be wrong (although
there are possible non-linear pooling rules that would not
be covered by this family).

(iii) In a third class of situations – the most interesting kind if
one particularly cares about the properties of the pooling
under question – one can find that the results can only be
fit by a limited range of exponents in the family and there-
fore you have learned something about the decision stage
per se (although only very conditional knowledge about
the rest of the model).

(iv) In a fourth class of situations – which is perhaps the most
frustrating – one finds that almost any exponent will pro-
duce predictions that fit the results, but the exact values of
the parameters differ wildly among the exponents in such
a way one cannot even characterize the way they differ.

(Further discussion and examples of use of this family can be
found in, e.g. Graham, 1989, 1991; Graham et al., 1992; Graham
& Wolfson, 2004).

A.4. Variance (noise): Deterministic vs. probabilistic models

Variability in the responses of neurons and variability the re-
sponses of observers in psychophysical experiments is ignored in
this review. For many purposes this is not a fatal omission. In prob-
abilistic models, it is frequently only the ratio of the mean to the
variance that is of substantial significance and that is a determin-
istic quantity. A related way of approximating a probabilistic mod-
el by a deterministic model was mentioned above (a probabilistic
high-threshold decision model approximated by a deterministic
Minkowski-distance function).

Appendix B. Three example cases using a two-unit model of
contrast normalization

Eq. (3) from the main text is repeated here. See definitions of
symbols in the main text. For clarity of argument here, the left
hand side is augmented explicitly here to show the dependence
of the response on all the various variables.

R1ðr;s1;w1 . . .wN ;c1; . . .cNÞ¼
s1 �c1

rþw1 �c1þ
Pj¼N

j¼2 ðwj �cjÞ
repeat of ð3Þ

The parameter r characterizes the amount of normalization by
setting the extent to which R1 depends linearly or nonlinearly on
the value of of c1. More specifically, the larger the value of r, the
less the effect of normalization in the network, i.e., the more the
network acts just like a linear system. To see this, consider the
following:

If r is very very large relative to the other terms in the denom-
inator, the value of the denominator is equal to r (approximately
equal but the approximation is very very good). Then the value
of R1 is proportional to c1 with a constant of proportionality equal
to s1/r. Thus the system is equivalent to a linear system (approxi-
mately equivalent but the approximation is very very good).

If r becomes smaller and smaller relative to the other terms in
the denominator, then R1 depends more and more nonlinearly on
c1, In other words, there is a greater and greater effect of the other
units via the normalization pool.

For ease of algebraic manipulation and transparency in the re-
sults we are going to consider here a model of only two units.
One unit is the signal unit (numbered as the 1st unit by convention
here). The second unit will represent all the other units that con-
tribute to the normalization of the signal unit. Although this may
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seem like a ridiculous over-simplification, it can be done without
loss of generality for a number of situations. (As mentioned in Part
A of this Appendix, a single unit can replace a set of units in power-
summation expressions, without loss of generality, whenever the
contrasts stimulating the different units in the set are all changing
proportionally to one another.)

Reducing Eq. (3) to just two units gives:

R1ðr; s1;w1;w2; c1; c2Þ ¼
s1 � c1

rþw1 � c1 þw2 � c2
ðB:1Þ

This two-unit model is used in several example cases below to
illustrate how the normalization model can lead to contrast-gain
change or to response-gain change or to both. In each of these
cases the model is asked to predict a family of functions like those
shown in Fig. 9, where each curve plots R1 vs. c1 (response of the
signal unit as a function of contrast affecting the signal unit) and
some aspect of the situation changes from curve to curve (while
every other aspect stays the same).

B.1. Case 1. Pure contrast-gain change

In Case 1, the values of all quantities in Eq. (B.1) except con-
trasts stay fixed throughout (are the same for all points on a curve
and for all curves in the family). The value of c2 (the contrast affect-
ing the other unit) stays fixed for each curve, but it changes from
curve to curve. Along each curve, the value of c1 is varied (and is
what is plotted on the horizontal axis in Fig. 9).

An experiment to which Case 1 might reasonably apply would
be a smallish test pattern (which affects the signal unit but not
the other unit) with a largish mask or adapt pattern (that affects
the other unit but not the signal unit) where the procedure is as
follows: The mask-pattern contrast (which is c2 in the equation)
is held constant while the test-pattern contrast (c1 in the equation)
is varied to measure the signal unit’s response for one curve. (The
measurement of the signal unit’s response could be either direct
measurement of a neurophysiological response or inferred mea-
surement of an internal psychophysical response.) The mask pat-
tern’s contrast c2 is different for different curves. Such an
experiment might be done to explore surround suppression, for
example. Let us compute the predictions from Eq. (B1).

Remember that the value of c2 is fixed on any one curve and the
values of r and w2 are fixed throughout a family. Thus the full
quantity r + w2 � c2 stays fixed on any one curve. This quantity
forms a large part of the denominator in Eq. (B.1). It will be useful
to substitute the name alpha (spelled out to keep it distinct) for
that fixed quantity to make the derivation more readable. Let

alpha ¼ rþw2 � c2 ðB:2Þ

Then Eq. (B.1) can be rewritten for each curve as follows. All
variables that are constant throughout a family of curves are
dropped entirely from the argument list for R1. And the value of
c2, which is fixed for any one curve and varies from curve to curve,
is put in the argument of R1 to the right of a vertical bar to indicate
this status. (Caution: This vertical bar is different from the diagonal
bar that indicates division in many places in these equations.)

R1ðc1jc2Þ ¼
s1 � c1

w1 � c1 þ alpha
¼ s1

w1 þ ðalpha=c1Þ
ðB:3Þ

What happens to R1(c1|c2) as c1 goes to infinity? The term (al-
pha/c1) in the denominator of the rightmost form of the Eq. (B.3)
goes to zero as c1 goes to infinity (remember that alpha is fixed).
Thus, the value of R1(c1) gets bigger and bigger until it asymptotes
at s1/w1. This asymptotic maximum value will be labeled Rmax

1 . That
is,

Rmax
1 ¼ s1=w1 ðB:4Þ
Note that the maximum response Rmax
1 is not affected by the val-

ues of r, w2, or c2. And, in particular, changing the fixed value of c2

from curve to curve does not change the value of Rmax
1 . In other

words, we could say that there is no response-gain change in this
case (Case 1).

To know whether changing the fixed value of c2 changes what
we could call the contrast gain (of the signal unit’s response R1

as a function of contrast c1), we need to be able to characterize
the function’s placement on the contrast axis. This characterization
can be done by calculating contrast threshold.

We will define the contrast threshold (denoted by symbol cth
1 )

to be the value of c1 that produces a criterion level of response
where the criterion level is denoted by crit. It is straightforward
algebraic derivation from Eq. (B.3) above to show that for any value
of crit,

cth
1 ¼

alpha � crit
s1 �w1 � crit

ðB:5Þ

In this expression, contrast threshold depends on alpha, which
itself depends on the fixed value of c2, which varies from curve
to curve. And thus, for this case (Case 1), the contrast threshold
does change from curve to curve.

Let’s consider a more specific case. For crit equal to half the
maximum response, let’s replace cth

1 by the symbol c50
1 . Then it

can be shown straightforwardly that:

c50
1 ¼

rþw2 � c2

w1
ðB:6Þ

Thus, in Case 1, as can be seen in Eqs. (B.5) and (B.6), changing
the value of c2 from curve to curve means that contrast threshold
changes from curve to curve. Combining both the statements about
Rmax

1 and cth
1 gives the following conclusion: Case 1 is a situation in

which there is no response-gain change, there is only a contrast-
gain change.

B.2. Case 2. Mixed response-gain change and contrast-gain change

To describe this case it will be convenient to let the symbol cra-
tio mean the ratio of the contrast stimulating the other unit to the
contrast stimulating the signal unit, that is:

cratio ¼ c2=c1 ðB:7Þ

In Case 2, the values of all parameters except contrasts will be
held fixed throughout the case. Also the value of cratio = c2/c1 stays
fixed for each curve, but it changes from curve to curve.

Another way to describe Case 2 is to say that both c2 and c1 are
changing for any individual curve, but they are changing
proportionally.

An experiment to which Case 2 might reasonably apply would
be a smallish test pattern with a largish mask or adapt pattern
(as in Case 1) but with a different procedure. In case 2, the mask-
pattern contrast is NOT held fixed while measuring the signal
unit’s response as a function of test-pattern contrast. Instead it var-
ies in direct proportion to the test-pattern contrast. Such an exper-
iment might be done to further explore surround suppression, for
example.

For Case 2, Eq. (B.1) can be rewritten for each curve as follows.
All variables that are constant throughout a family are dropped en-
tirely from the argument list for R1. The value of cratio, which is
fixed for any one curve and varies from curve to curve, is put to
the right of a vertical bar to indicate this status. The variable c2 is
not in the argument list as it is completely determined by c1 and
cratio, both of which are arguments already. This rewriting of Eq.
(B.1) produces the following function for each curve in a family
from Case 2:
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R1ðc1jcratioÞ ¼ s1 � c1

rþw1 � c1 þw2 � cratio � c1

¼ s1 � c1

rþ ½w1 þw2 � cratio� � c1
ðB:8Þ

It will be convenient to introduce another temporary symbol gam-
ma, where

gamma ¼ ðw1 þw2 � cratioÞ ðB:9Þ

Notice that in this Case 2, gamma stays constant on any curve
measuring R1 as a function of c1, since w1, w2, and cratio all stay
constant. Expression (B.8) can then be rewritten as:

R1ðc1jcratioÞ ¼ s1 � c1

rþ gamma � c1
¼ s1

ðr=c1Þ þ gamma
ðB:10Þ

Letting c1 go to infinity produces the maximum possible value on
the curve:

Rmax
1 ¼ s1

gamma
¼ s1

w1 þw2 � cratio
ðB:11Þ

Thus, for Case 2, the maximum response Rmax
1 on a curve is

strongly influenced by value of the ratio between the contrasts
(cratio) which is held constant along each curve but changes from
curve to curve. In Case 2, therefore, response gain is changing from
curve to curve.

The contrast threshold for Case 2 also changes from curve to
curve. We will skip the expression for cth

1 for this case, giving only
the one for the criterion of half-maximum response, namely:

c50
1 ¼

r
gamma

¼ r
w1 þw2 � cratio

ðB:12Þ

Thus Case 2 shows both response-gain change and contrast-gain
change.

B.3. Case 3. Pure response-gain change

In Case 3, the value of r is held fixed for all points on all curves
in the family. Furthermore c2 equals c1 for all points on all curves in
the family. The excitatory sensitivities of the signal unit (s1, s2) as
well as the weights of all the inputs into the normalization net-
work (w1, w2) remain fixed along any single curve; however, these
vary from curve to curve.

An experiment to which Case 3 might reasonably apply would
be one in which a sinusoidal grating was used as test stimulus
and both its spatial frequency and contrast were varied as follows:
The grating’s spatial frequency is held fixed for the measurements
of the signal unit’s response at different grating contrasts to pro-
duce one curve. But the spatial frequency is different for each
curve. (This is the experiment done on a typical V1 neuron in
Fig. 9.) Again dropping as arguments the variables that stay fixed
throughout a family and segregating those that are constant on a
curve but vary among curves to the right of a vertical bar gives:

R1ðc1js1; s2;w1;w2Þ ¼
S1 � c1

rþw1 � c1 þw2 � c2
ðB:13Þ

If nothing further is assumed about the excitatory sensitivities
and the normalization weights, a wide variety of families of func-
tions could be predicted. However, Case 3 makes one other and
crucial assumption. It assumes that the excitatory sensitivities
and the normalization weights vary in a coordinated way such that
the denominator of the normalization equation remains approxi-
mately equal. That is, it assumes that the total amount of inhibition
exerted by the normalization network remains approximately con-
stant when spatial frequency (or orientation) is changed. This
seems a reasonable assumption given what we have known for
many years about this aspect of pattern vision. When spatial fre-
quency (or orientation) is changed, then exactly which V1 cell
responds most to it changes, and which V1 cell responds to it
second-most changes, and so on. But there is always some V1 cell
responding very well, and some others responding somewhat less,
and some others responding still less, and so on. Thus, if the whole
set of neurons sensitive to all spatial frequencies or orientations
(the set with receptive fields in more or less the same position)
is contributing to inhibition of any one neuron, this assumed con-
stancy of the total amount of inhibition is precisely what would be
seen. This kind of situation is often called a global control of contrast
gain.

There would be a number of ways of instantiating this assump-
tion of a constant total amount of inhibition in the two-unit model
here. We will use a very simple way (specialized to fit with using
an exponent of 1 in our equations):

s1 þ s2 ¼ 1; w1 ¼ q � s1 and w2 ¼ q � s2 ðB:14Þ

where q is a parameter that is assumed to be held fixed for a family
of curves. It would be very easy to generalize the constraint in Eq.
(B.14) to a larger number of units.

In words this assumption says: As the spatial frequency
changes, the total excitatory sensitivity of the two units stays the
same. The normalization weight from a unit changes proportion-
ally to its excitatory sensitivity. This latter statement means that
when a neuron or unit fires less, it produces less inhibition.Now
simplifying Eq. (B.13) using the equivalences in assumption
(B.14) and then simplifying still further gives:

R1ðc1js1Þ ¼
s1 � c1

rþ q � s1 � c1 þ q � s2 � c2
¼ s1 � c1

rþ q � c1

¼ s1

ðr=c1Þ þ q
ðB:15Þ

It is straightforward to show that, on each curve R1 (c1|s1) the max-
imum response and contrast threshold will be:

Rmax
1 ¼ s1

q
ðB:16Þ

c50
1 ¼

r
q

ðB:17Þ

Remember that, for this Case 3, the values of q and r are held
fixed throughout a family of curves, but the value of s1 is different
for different curves. Hence, for this case, the maximum response is
varying from curve to curve in a family, but the contrast threshold
is not. Thus, Case 3 is a pure case of response-gain change with no
contrast gain. A pure response-gain change is consistent with the
empirical results in Fig. 9.

Appendix C. More about the example containing both contrast
normalization and contrast comparison

C.1. Some specific points about the equations in Fig. 18

The particular equations used in Fig. 18 depended on grouping
the channels into three sets and approximating each set by a single
composite channel. The responses of these three sets then enter
into the equations as numbers (E, EO, EZ) giving what the responses
would be if there were no normalization in the system. The equa-
tion for Dobs computes what happens when normalization is added
into the system. Although the equations and the symbol definitions
have already been given in Fig. 18, we repeat some of them here in
order to discuss them a bit further. Let’s start with the final equa-
tion. It gives the variable that determines the observer’s response
Dobs in the form familiar from the contrast-normalization exam-
ples; the numerator is the excitatory response from the channel
that responds to the pattern on which the observer’s response de-
pends, and the denominator is the action of the normalization
network.
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Dobs ¼
E

ðrþ EO þ EZÞ
ðC:1Þ

The numerator E is from the tuned channel, the channel for
which the first filter has receptive fields matched to the local spa-
tial frequency and orientation of the visual pattern, and for which
second filter is matched to the global characteristics of the pattern.
This is the channel that can ‘‘do the task’’, or more precisely, it is
the channel that provides information allowing the observer to
do better than chance on the task.

r is the usual parameter characterizing the normalization net-
work. Both EZ and EO in the denominator are from sets of other
channels; these other channels cannot themselves do the task,
but they contribute to the normalization pool for the tuned chan-
nel. The difference between them is as follows.

The channels producing EZ contain a contrast-comparison pro-
cess, which adapts rapidly enough that the comparison level at
the time of the test pattern equals the adapt contrast A. Hence
the output EZ is not monotonic with test contrast.

The channels producing EO are monotonic with physical con-
trast. This monotonicity could be produced in at least two ways:
These channels might be monotonic with physical contrast be-
cause their comparison level changes so slowly it is still set at 0%
contrast at the time of the test pattern. Alternately, these channels
might simply not have a contrast-comparison process at all but
just be conventional FRF processes.

Let us look a bit further at the expressions for E, EZ and EO.
A is the contrast of the adapt pattern.
C1 and C2 (upper case letters C) are the two different contrasts
in the test pattern.

[An aside to prevent possible confusion. Note that the meanings of
C1 and C2 (upper case) on the equations of this figure are the con-
trasts of two different Gabor patches. This is NOT always identical
to the meaning of c1 and c2 (lower case) when those terms ap-
peared previously [main text Eqs. (2) and (3) and many equations
in Appendix B]. The lower case values c1 and c2 referred to the con-
trasts affecting two different units, not (necessarily) the contrasts
of two different Gabor patches.]

Not surprisingly, the expression for E from the tuned channel
depends on the two test-contrasts, C1 and C2, and on the adapt
contrast A. (The adapt contrast A does not directly appear in
the equations of Fig. 18, because the term Cj with a hat over it
is used instead, and that term equals the difference between Cj

and A.)
The expression for E also depends on two important parameters

km and grect that can be seen in the diagram at the bottom of Fig. 17
as well as being defined in the list in Fig. 18. The parameter km is
the exponent in the piecewise power function that is assumed
for the input–output function at the comparison stage. The param-
eter grect multiplies the steeper side of this input–output function
to produce the shallower side. It is zero for a function of the half-
wave rectification type (the shallow half is a horizontal line at
zero) and 1 for a function of the full-wave type (an even-symmetric
function).

What about EZ and EO? These are from channels that cannot do
the task as they do not have the proper receptive fields to see both
the local information and the global. And these are channels that
have no sensitivity to the difference between the two test contrasts
so there is nothing in the expressions for them like a difference be-
tween C1 and C2. These channels are sensitive instead to the total
amount of contrast in both patches; the relevant contrast for EZ

is the test contrast minus the adapt contrast; and the relevant con-
trast for EO is the test contrast itself. The parameter km appears
here again for the same reason as for E. But grect is irrelevant.
C.2. Why the derivation of the equation in Fig. 18 was reasonably
simple

First, the fact that the contrast normalization and contrast com-
parison processes are themselves expressible as simple equations
helps make the resulting equations simple.

Secondly, there was a simplification that was more specific to
the kind of test patterns we used. As we had shown by extensive
numerical filtering previously (e.g. Graham et al., 1992), the re-
sponses of linear filters to patterns like those in Fig. 15 can be very
well approximated by simple combinations of the responses to the
two contrasts of Gabor patches. This approximation is made in the
equations of Fig. 18 for the responses of all these channels. Thus we
did not have to actually do any filtering or indeed even consider
the full luminance profiles as a function of space or time. One could
work simply with C1 and C2. [A further comment about this approx-
imation procedure. Although we have only extensively documented
this possibility for patterns we have used, I suspect that there are
many other patterns routinely used in experiments for which such
approximations could be concocted if the filtering became burden-
some. And searching for such approximations seems often to pro-
duce insights into what is really driving the results in the cases at
issue.]

Thirdly, we use the very convenient family of Minkowski-dis-
tance functions (see Appendix A) to approximate the action of
non-linear pooling both in the normalization pool, and for the ef-
fect of multiple channels’ outputs on the observer’s decision.

Then the derivation of the expressions for E, EO, EZ and of the
expression for the normalization pool and the decision variable
Dobs is parallel to derivations done earlier for tasks not involving
adaptation and therefore not showing any effects of contrast com-
parison (e.g. Graham & Sutter, 1998, 2000; Graham et al., 1992).
The only place which is more complicated here than in those ear-
lier studies is the derivation of the expression for the tuned chan-
nel in the numerator (since here it is necessary to keep track of
what both the On and the Off members of the pair of channels
are doing).

To produce the equation shown here, we set exponents equal to
1 wherever a Minkowski-distance function was used to represent
non-linear pooling across multiple channels. And those exponents
that equaled one were not written into these equations at all to re-
duce visual clutter. (This had also been done with the two-unit
model in Appendix B). As it happens, the predictions are not partic-
ularly sensitive to those exponents anyway as long as the numer-
ator and denominator are kept in balance.

Fourthly, we make no attempt to explicitly include noise. (See a
related comment in Appendix A) But we need to predict a probabi-
listic quantity: the observer’s percent correct. Hence, as part of the
fitting process we use a three-parameter S-shape function to pre-
dict the observer’s percent correct as a function of the calculated
value of Dobs from the equations above.

C.3. About fitting the predictions to the results

The fits were done by eye and with trial-and-error sampling of
parameters (Graham, Wolfson, Pan, Wauble, & Kwok, 2009). To do
the fits in Fig. 16, nine parameters were varied for each observer:
the parameter characterizing the normalization network r; the
three parameters in the s-shaped function converting Dobs to per-
cent correct; the three weights w, wo, wz on channel sensitivities
and normalization strengths; and the two parameters km and grect

that characterize the input–output function of the contrast-
comparison process.

Nine parameters may seem a large number, but these nine were
used to fit a very large number of different data points. Thus the
goodness of fit in Fig. 16 is very impressive.
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Of course not all nine of these parameters are independent of
one another. Thus for most of the parameters no conclusions can
be drawn from what values did or did not produce predictions that
fit the results.

There were two interesting ways, however, in which the fit to
the results put serious constraints on the parameters.

(1) It was necessary that the value of km be somewhat greater
than 1.0 and the predictions here are for a value of 2. This is nec-
essary here in order to account for the fact that the notch of the
so-called straddle effect contains test patterns with contrasts which
do not really straddle the adapt contrast. (See more on p. 10 of
Wolfson & Graham, 2009).

(2) There is also a strong constraint on the ratio of wo to wz, that
is, on the relative strength of input to the normalization network
from channels that are monotonic with contrast compared to the
input from channels with a shifting contrast-comparison level. This
constraint is provided by two rather subtle effects in the results:
the widening of the notch seen in the results as adapt contrast gets
higher and the left–right asymmetry of individual curves. If one at-
tempts to fit these results with a denominator that contains ONLY
channels which themselves show the comparison process (that is,
with wz > 0 and wo = 0) these two effects disappear. On the other
hand, if there is too much input from the channels that do not
show the comparison-level adaptation (that is if wo gets too large)
the functions rapidly get wildly asymmetric and do not show a or-
derly shift with adapt contrast at all. It is the ratio of wo to wz that
matters over much of the range. And it is this parameter that pro-
vides much of the leverage over individual differences in the sev-
eral observers we have looked at so far (p. 15–16 in Wolfson &
Graham, 2009).
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