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Abstract—Autism spectrum disorder (ASD) is accompanied with impaired social-emotional functioning, such as emotional 

regulation and recognition, communication, and related behavior. Study of the alternations of the brain networks in ASD may not 

only help us in understanding this disorder but also inform us the mechanisms of affective computing in the brain. Although 

morphological features have been used in the diagnosis of a variety of neurological and psychiatric disorders, these features did 

not show significant discriminative value in identifying patients with ASD, possibly due to the omission of the information related 

to the changes in structural similarities among cortical regions. In this study, structural images from 66 high-functioning adults 

with ASD and 66 matched typically-developing controls (TDC) were used to test the hypothesis of cortico-cortical relationships 

are abnormal in ASD. Seven morphological features of each of the 360 brain regions were extracted and elastic network was 

used to quantify the similarities between each target region and all other regions. The similarities were then used to construct 

multi-feature-based networks (MFN), which were then submitted to a support vector machine classifier to classify the individuals 

of the two groups. Results showed that the classifier with features of MFN significantly improved the accuracy of discriminating 

patients with ASD from TDCs (78.63%) compared to using morphological features only (< 65%). The combination of MFN 

features with morphological features and other high-level MFN properties did not further enhance the classification performance. 

Our findings demonstrate that the variations in cortico-cortical similarities are important in the etiology of ASD and can be used 

as biomarkers in the diagnostic process.  

Index Terms—Autism Spectrum Disorder (ASD), social-emotional functioning, multi-feature-based network (MFN), diagnostic 

biomarker 

——————————      —————————— 

1 INTRODUCTION

UTISM Spectrum Disorder (ASD) is a pervasive neu-
rodevelopmental condition affecting emotion, cogni-

tion and behavior throughout the lifespan. The core 
symptoms of ASD include abnormal emotional regulation 
and social interactions, restricted interest, repetitive be-
haviors and hypo-or-hyper reactivity to sensory stimuli [1, 
2]. According to current estimates, between 0.5-2% of the 
population is affected by ASD [3-5]. Currently, the main 
method for diagnosis is an extensive clinical evaluation, 
usually performed by psychologists and psychiatrists 
utilizing validated diagnostic tools such as the Autism 
Diagnosis Observation Schedule (ADOS) [6] and the Au-
tism Diagnostic Interview – Revised (ADI-R) [7]. Because 
ASD is indicated by significant alterations in cerebral 

morphology compared to typically-developing controls 
(TDC), e.g., overgrowth of frontal cortex in early child-
hood (Courchesne, et al., 2003; Hazlett, et al., 2017; 
Zwaigenbaum, et al., 2014), age-related variation in corti-
cal thickness (CT) (Raznahan, et al., 2009; Wallace, et al., 
2010), and abnormalities in grey matter (GM) structures 
in both childhood and adulthood [8-11], the magnetic 
resonance imaging (MRI) based diagnosis should have 
large application value. However, such applications cur-
rently have a limited accuracy [12-14]. Therefore, devel-
opment of sophisticated analytic methods and a deep 
understanding of the neuromorphological underpinning 
of ASD are essential. 

Recent studies using multiple morphological 
measures and machine learning technologies to differen-
tiate ASD from TDC have reported remarkable classifica-
tion accuracies on small sample sets (20 – 30 subjects) 
based on anatomical features, such as GM density [15, 16] 
and geometric and/or volumetric features of cortical sur-
face [17-19]. However, these morphological measures 
produced near-chance accuracy (~60%) when used on 
large heterogeneous datasets [12, 14]. These results sug-
gest that structural abnormalities of individual brain re-
gions may not provide sufficient information for diagnos-
tic purposes or may underrepresent potential brain 
mechanisms of ASD. Recently, structural similarity be-
tween paired brain regions have achieved marked per-
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formance for identifying Alzheimer’s disease [20, 21], 
fragile X syndrome [22], and children with ASD [19]. 
However, it is still unclear whether the cortico-cortical 
relationship is different in adults with ASD, along with its 
application value for diagnostic purposes. 

To test our hypothesis of abnormalities in cortico-
cortical similarity of high-functioning adults with ASD, 
we quantified the inter-regional similarity by using Elas-
tic Network [23] based on seven morphological measures 
extracted from individuals’ brain images [24-29]. This 
method was shown to be a valid statistical method to es-
tablish a relational network based on multi-dimensional 
features [30] and is robust for estimating network when 
the number of brain regions is larger than sample size [31]. 
We then built a multi-feature-based network (MFN) [32] 
for each individual and examined its classification per-
formance using support vector machine (SVM) [33] with 
leave-one-out cross validation strategy. The comparisons 
in terms of classification performances between vertex-
based morphological features, voxel-based GM density, 
MFN, as well as network properties of MFN were con-
ducted to demonstrate the significant improvement in 
classification and to support the hypothesis that ASD is 
associated with the changes in the relationship among 
brain regions in terms of morphological features. 

2 MATERIALS AND METHODS 

2.1 Imaging Data 

Structural brain images were acquired from the ABIDE 
database (http://fcon_1000.projects.nitrc.org/indi/abide). 
The structural brain scans of 66 adults with ASD and 66 
matched TDCs selected from 4 independent study sites 
(New York University Langone Medical Center: NYU; 
Social Brain Lab at the Research School of Behavioral and 
Cognitive Neurosciences, University Medical Center 
Groeningen and Netherlands Institute for Neurosciences: 
SBL; Katholieke Universiteit Leuven: KUL; Icahn School 
of Medicine at Mount Sinai: ISMMS) were the same as in 
our previous study [10]. Patients with ASD were all in the 
high-functioning end of the spectrum (IQ > 80), and re-
ceived a clinician’s DSM-IV-TR diagnosis of Autistic Dis-
order, Asperger’s Disorder, or Pervasive Developmental 

Disorder Not-Otherwise-Specified. The two groups were 
matched on gender, age, and full scale IQ for each sites 
and cross sites (t(130) = 0.2; p = .99 for age and t(112) = 1.7; 
p = 0.90 for full scale IQ). Descriptive data for the samples 
are shown in Table 1. Although the information of full 
scale IQ of SBL dataset were not available, all participants 
received full scale IQ tests and their scores were within 
the normal range. 

2.2 Image Preprocessing 

All image data were processed using FreeSurfer v5.3.0 
(http://surfer.nmr.mgh.harvard.edu). Briefly, prepro-
cessing included motion correction, removal of non-brain 
tissue [34], Talairach transformation, intensity normaliza-
tion, segmentation, and generation of grey-white matter 
boundary [35]. Topology and geometry of the recon-
structed surface were validated once the cortical surface 
reconstruction was completed [36]. Surfaces were inflated 
and registered to a priori template by which regional av-
erages of cortical thickness (CT), surface area (SA), corti-
cal volume (CV), local gyrification index (LGI), sulcal 
depth (SD), gyri height (GH) and curvature (CURV) were 
calculated. One ASD participant was excluded because 
the folding information could not be extracted. Both un-
smoothed images and smoothed images using a 10-mm 
full-width-of-half-maximum Gaussian kernel were exam-
ined. 

For comparison with GM density, VBM analyses 
were conducted using the CAT12 toolbox 
(www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) in 
Statistical Parametric Mapping (SPM12) with the default 
setting. Briefly, T1 images were normalized using affine, 
followed by intra-subject realignment, bias correction for 
homogeneities, and the segmentation of GM, white mat-
ter and cerebral spinal fluid (CSF) [37]. The DARTEL al-
gorithm [38] was applied to the segmented GM images 
for spatial normalization, and for resampling of image to 
a 3 × 3 × 3 mm spatial resolution. Non-linear deformation 
for the effect of spatial normalization was corrected to 
generate these modulated normalized images, which rep-
resent relative volume after correcting for brain size. Each 
image was then smoothed using an 8-mm full width at 
half maximum Gaussian kernel. 

TABLE 1 
DEMOGRAPHIC INFORMATION OF PARTICIPANTS 

 

 

 

 

 

 

 

 

 

 

NYU = New York University Langone Medical Center; SBL = Social Brain Lab at the Research School of Behavioral and Cognitive Neurosciences, 

University Medical Center Groeningen and Netherlands Institute for Neurosciences; KUL = Katholieke Universiteit Leuven; ISMMS = Icahn School 

of Medicine at Mount Sinai; TDC = typically-developed controls; ASD = autism spectrum disorder; M/F = male/female; Age and IQ are shown as 

mean (standard deviation); the two cohorts did not significantly differ in age and in IQ. 

 

http://fcon_1000.projects.nitrc.org/indi/abide/
http://surfer.nmr.mgh.harvard.edu/
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2.3 Construction of Multi-feature-based Network 
(MFN) 

For network construction, nodes were the regions defined 
by the brain parcellation with 360 cortical regions and 
without subcortical tissues [39]. The hippocampus was 
excluded from this analysis due to inability to extract 
folding information from this region. Thus, a total of 358 
cortical regions of the entire brain were included. 

For edges of the network, Elastic Net [23] was uti-
lized instead of paired correlations (e.g., Pearson correla-
tion), to quantify the relationship between the target brain 
region and multiple predictor regions. During each re-
gression process, the L1-norm regularization was used to 
obtain a sparse solution that efficiently excluded the irrel-
evant predictors [40], and L2-norm regularization was 
used to compensate for the deficits of L1-norm regulariza-
tion that L1-norm regularization only identifies the num-
ber of predictors that equal to the number of observations 
and only selects one from the highly correlated predictors 
[23].  

For the calculation of the edges, we denote each indi-

vidual as 
1 2[ , ,..., ]T m d

mx x x R  X , with total m brain 

regions and d morphological features (7 features in our 
analysis) of each region. Each regional morphological 
feature of an individual was normalized using the global 
average and the standard deviation of this feature. The 

cortico-cortical relationships were generated by multiple 
regression procedure, with each brain region alternately 
serving as the target region and the remaining regions as 

the predictors. For example, in the i-th regression, 
ix  was 

regarded as the target vector, and the other m-1 regional 
vectors could form the regressor matrix A. Therefore, we 

set the 
ix in A to 0 (

1 2 1 1[ , ,..., ,0, ,..., ]i i mx x x x x A ), 

denoted a regressor matrix including all regional vectors 
except the i-th region. The linear regression model was 

defined as y = Aw , where wRm×1 and y denoted the 

regression coefficient vector and target vector, respective-
ly. The sparse solution was realized by solving the regu-
larized optimization problem, formulated as:  

                     
2 2

1 22 1 2

1
min

2
  

w
y - Aw w w                (1) 

where 
1  is the sparsity control parameter, with a larger 

value indicating a sparser regression coefficient vector. 
Non-zero values in the achieved sparse coefficient vector 

were set to 1. Finally, an MFN matrix (358  358) was 
formed by using the obtained binary coefficient vectors. 
The SLEP package was used to solve the optimization 
problem [41]. Here, we set the parameter opts.rFlag = 1, 

so that 
1  and 

2  are the ratios of the maximal sparse 

parameter, above which the sparse parameter could cause 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 1. Schematic representation of multi-feature based network (MFN) construction pipeline (a) and leave-one-out 
cross-validation process (b). The pipeline of MFN construction. Seven types of morphological features were extract-
ed and averaged within each of the 358 brain regions based on a priori parcellation. The averaged features were 
concatenated to an m1 vector for each region, and elastic network was utilized to quantify the cortico-cortical rela-
tionship between the vector of one brain region (the target variable, y) and the vectors of other regions (the regres-
sors, A). The regression process was repeated 358 times. An example of the k-th regression process is also given by 
using a parcellation with m nodes (v1 - vm), in which y is the feature vector of region vk. The k-th row in the network 
matrix represents a set of regression coefficients (W) from a sparse regression model (nonzero values were set to 1). 
Connections and properties of the established network were used for classification. The leave-one-out cross-
validation process with nested feature selection, parameter optimization and SVM classifier. 
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the zero solution. To find the optimal sparsity of MFN for 

ASD diagnosis, we constructed MFN by varying the 
1  

and 
2  values in specified ranges, where 

1 2 10

1 {2 ,2 ,..., 2 }     and
2 {0.1,0.2,...,1}  , and evalu-

ated the corresponding performance in terms of classifica-
tion accuracy. 

A schematic overview of MFN construction is shown 
in Fig. 1(a), where an example of the MFN and its inci-
dence matrix (with m nodes, i.e., v1 - vm, rather than 358 
for the real data) was also illustrated. Each row in the in-
cidence matrix is the set of sparse coefficients from the 
linear regression model with the corresponding node as 
the target variable (labeled on the right side), with non-
zero values being set to 1. A value of one suggests a rela-
tive robust relationship between the target region and all 
other regions included in the regression analysis, while a 
value of zero suggests a weak relationship. The asymmet-
rical MFN matrix, therefore, is a result of multiple regres-
sion process. For each subject, the binary values of the 
asymmetrical matrix were concatenated to form a feature 
vector with 358 (358 1) 127,806    elements, which was 
used as the input of feature selection. Notably, the asym-
metric matrix does not reflect any causality [42], rather, it 
represents region-to-region similarity in terms of GM 
morphology. 

2.4 Properties of the MFN 

Although edges of MFN do not represent brain connectiv-
ity, we can treat the similarity matrix as a network. Here, 
we extracted three types of network properties, which 
reflect the local and global organizations of a network, as 
extra features that may potentially enhance the classifica-
tion performance. Network properties were calculated 
using the Brain Connectivity Toolbox [43]. 

Clustering coefficient (CC) measures the local connec-
tive density of neighbors of a given node. The CC of node 
i is defined as the number of existing edges between 
neighbors of this node divided by all possible edges be-
tween this node and its neighbors [44], which is formulat-
ed as: 

( )( )( )1

2 ( 1)

ij ji ih hi jh hjj h

i i N
i i ij jij

e e e e e e
CC

n K K e e

  


 

 


         (2) 
where eij is the edge from node i to node j, and n is the 
number of nodes. 

Degree (K) measures the importance of nodes in the 
network, which is defined as the number of edges that are 
connecting to a specific node. 

Global efficiency (GE) quantifies the efficiency of in-
formation transfer across the entire brain, formulated as: 

 

1

,
( )1

1

ijj N j i

i N

d
GE

n n

 

 









                  (3) 

where 
ijd   is the shortest path length from node i to node 

j. 

2.5 Feature Selection and Group Discrimination 

To generate a relative unbiased assessment of classifica-

tion performance, we applied the leave-one-out cross-
validation strategy with nested feature selection and clas-
sifier training only on training set of each interaction (see 
Fig. 1(b)). Here, we applied a two-step feature selection 
strategy to find a relative optimal feature subset. The first 
step of feature selection was utilized to roughly filter-out 
the features that are irrelevant for the categorization. We 
applied χ2 test as a filter feature selection method for dis-
crete features (MFN connection), and two sample t-test 
for continuous features (morphological features and net-
work properties). Features with p-values exceeding 0.05 
(uncorrected) were excluded. The selected features were 
then evaluated by linear SVM-based recursive feature 
elimination (SVM-RFE) [45] during the second step of 
feature selection. SVM-RFE is a backward feature elimina-
tion strategy that iteratively removes the features with the 
lowest discrimination performance as evaluated by SVM. 
We used the linear kernel to evaluate the importance of 
each feature with the ranking criterion as the square term 

of weight coefficients (w2), calculated by 
k k k

k

yw x , 

where yk and xk is the class label and the n dimensional 

feature vector, of sample k, respectively;  is an index of 
support vector, corresponding samples of non-zero val-

ues in  are support vectors. Because the feature vector is 
multiplied by class label, a high discriminative feature 
should have a large value of |w|. In each interaction, the 
500 lowest ranking features were removed when feature 
dimension was over 10,000; the step size was reduced to 
50 for the last 10,000 features, 5 for the last 1,000 features, 
and 1 for the last 100 features. Because the dimensions of 
regional morphological features and network properties 
were small (358 features for each), only one step of feature 
selection, the SVM-RFE, was utilized in the classification 
procedures based on these features. 

The two-step feature selection was conducted on all 
participants to evaluate the importance of each feature. 
Because each classifier might be trained by different fea-
tures, utilization of the whole dataset enabled us to find 
features that most likely contributed to the discrimination 
between these two cohorts (TDC vs. ASD). Large absolute 
weight derived from SVM-RFE indicates the discrimina-
tive ability of a feature. Note that only connections with p 
< 0.05 (χ2 test) were evaluated by SVM-RFE due to the 
two-step feature selection strategy. To investigate the 
driving regions that primarily contribute to the abnormal 
cortico-cortical similarity in ASD, we scored each brain 
region by summing up the absolute SVM-RFE weights of 
connections to this region. Regions with higher scores 
indicate these regions are more relevant to the discrimina-
tive connections and are key regions that responds more 
to the altered cortico-cortical relationship in ASD com-
pared to the TDC. 

2.6 Classification 

The assessment of classification performance was con-
ducted using the LIBSVM toolbox [46]. A nested five-fold 
cross validation was applied to optimize parameter C of 
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the linear SVM classifier in the range of 8 7 8{2 ,2 ,..., 2 }   on 

the training dataset of each cross validation process. The 
final classifier was trained based on the selected features 
and the parameter. We used accuracy, sensitivity, speci-
ficity, and area under the receiver operating characteristic 
curve (AUC) as the indices for the assessment. We uti-
lized χ2 test to determine the statistical significance in 
accuracy based on the different types and combinations 
of features.  

2.7 Randomization Test 

To examine the statistical significance of classification 
performance relative to random guessing, a randomiza-
tion test was utilized, which generated the confidence 
interval (CI) of accuracy at chance level by repeating the 
entire cross-validation procedure for 500 times using ran-
domly shuffled ASD and TDC labels. The real accuracy 
that exceed 95% CI was considered significantly different 
from chance level. We conducted the randomization test 
separately for each type of features. 

3 RESULTS 

3.1 Classification based on morphological features 

Classification analyses showed the limited discriminative 
power in identifying patients with ASD from TDCs based 
on morphological measures (accuracies < 65%), which is 
consistent with previous findings from large heterogene-

ous samples [12, 14]. Classification accuracies and ROC 
curves of different classification analyses are shown in Fig. 
2(a) and (b). Data smoothing and vertex-wised infor-
mation did not further improve the classification perfor-
mance (ps > 0.05, Table S1 and S2). Regional features ex-
tracted from unsmoothed data were, therefore, used for 
further analysis. The combination of all regional morpho-
logical features could not further improve the classifica-
tion accuracy (58.02%) when compared to accuracies of 

TABLE 2 
COMPARISONS OF CLASSIFICATION PERFORMANCES BASED ON MORPHOLOGICAL FEATURES, NETWORK PROPERTIES, MFN CON-

NECTIONS, AND THE FEATURE COMBINATIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MF = the combination of all morphological features; NP = the combination of all network properties; MFN = multi-feature-based network; ACC = 

accuracy; SEN = sensitivity; SPE = specificity; AUC = area under curve; PMFN = compared the ACC obtained by each feature in relative to MFN by 

using χ2 test.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Classification performances of different classi-
fication procedures. (a) Classification accuracies with 
varying proportion of enrolled features. MF is the 
combination of all morphological features; NP is the 
combination of all network properties. (b) ROC at the 
best classification performance. 
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using CT (62.60%), CV (64.12%), and LGI (60.31%) alone 
(Table 2). By utilizing the randomization test, we found 
that above-chance accuracy was only achieved by using 
CV (accuracy = 64.12%, p < 0.05), whereas other morpho-
logical measures and their combinations were indistin-
guishable from chance level (Fig. 3). Similar results were 
also observed with the voxel-based morphometry, which 
achieved accuracies of 57.58% by using regional GM den-
sity, with no significant improvement from chance level 
(Fig. 3). 

3.2 Classification performance based on MFN 
connections 

By varying parameters 1 and 2, the accuracy of MFN 

connections peaked at 1 = 2-9 and 2 = 0.7, with the accu-
racy of 78.63%, AUC of 0.83 (Table 2 and Fig. 2), and a 
significant improvement relative to accuracies of morpho-
logical features (ps < 0.01, Table 2). Furthermore, the best 
classification performance was achieved by using only 25% 
of the top-ranked features that survived from the χ2 test (p 
< 0.05), indicating that the marked diagnostic perfor-
mance resulted from a small subset of features derived 

from a relative sparser network (Fig. 2(a)). Combining 
morphological features with MFN connections (MFN + 
MF) did not further enhance the classification perfor-
mance, which only achieved 70.23% in accuracy with 
AUC of 0.75, though it performed better than using mor-
phological features alone. Results from randomization 
test showed significant above-chance accuracies achieved 
by both MFN connection and the combination of MFN 
and morphological features (p < 0.05, Fig. 3). Results from 
single site analyses showed that the accuracies of SBL 
(92.37%), NYU (88.55%), and ISMMS (83.21%) were high-
er than the accuracy across all sites, whereas the accuracy 
of KUL was not (76.34%). 

3.3 Discrimination of network properties 

We employed network properties of the MFNs at the 

best-performing parameters (1 = 2-9, 2 = 0.7) as potential 
means for further improving the classification perfor-
mance. However, the classification power of network 
properties and their combinations were similar as using 
some of the morphological features (accuracies < 60%, see 
Table 2), which were not statistically distinguishable from 
chance-level (Fig. 3). Moreover, these network properties 
provide limited supplementary information to the classi-
fier beyond MFN connections (MFN + NP), which 
achieved only 71.76% in accuracy, with no further en-
hancement (Fig. 2(a) and Table 2). Although the classifica-
tion performance that combined MFN, morphological 
features, and network properties together received signif-
icant improvement in accuracy (MFN + MF + NP, accura-
cy = 78.63%, p < 0.05), it still did not significantly exceed 
the performance of MFN alone. 

We further examined the difference in network proper-
ties by using statistical analysis. False discovery rate (FDR) 
was used for correcting the threshold of multiple compar-
isons. Results showed no significant differences in CC as 
well as in GE between the two cohorts (qs > 0.05, two 
sample t-test, FDR corrected), further supporting the ar-
gument that network properties have limited contribution 
to the discrimination. The T values of comparisons are 
shown in Fig. 4. 

3.4 Discriminative connections and regions related 
to MFN discrimination 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison of the classification accuracies of 
morphological features, MFN and their combinations, 
and network properties, with chance level. The grey 
lines with each point as a ‘’ represents the 5% and 
95% CI of chance accuracy distribution estimated by 
randomization analysis on each type of features. Red 
arrows indicate significant above-chance accuracies (p 
< 0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. Comparison of network properties between 
patients with ASD and the TDCs.  
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The top 30 discriminative anatomical connections with 
the highest absolute weights are shown in Fig. 5. We 
found that abnormal connections in ASD were mainly 
associated with the prefrontal cortex (e.g., Broadman area 
9, 10, and medial prefrontal cortex), anterior cingulate 
gyrus, and areas in the parietal and occipital lobe (e.g., 
inferior parietal cortex, precuneus, and area V1). For ex-
ample, abnormal connections were found between the left 
middle insula (MI) and left frontal eye field (FEF), left V1 
area and right premotor eye field (PEF), and left 7P medi-
al area (7Pm) and left Broadman area 45. In addition, 
connections with higher weights were mostly long-
distance connections that linked anterior areas with mid-
dle and posterior areas of the brain. The abbreviations of 
all brain regions are shown in Table S3. 

Brain regions with the top 5% scores, defined as the 
sum of absolute SVM-RFE weights of the connected links, 

are visualized in Fig. 6. The regions that are primarily 
responsible for the abnormalities in cortico-cortical rela-
tionship of ASD include, for example, the dorsal, medial 
and ventral prefrontal cortices (e.g., Broadman area 9, 8, 
and 47), right primary motor cortex (PMC), left primary 
visual cortex (V1), right supramarginal gyrus (area PFm), 
left precuneus (lateral area 7P), and left middle insula 
(MI). 

4 DISCUSSION 

4.1 Limited diagnostic utility of the direct use of 
morphological measures for ASD classification 

Our results showed limited discriminative ability when 
using only morphological measures derived from both 
surface-based and voxel-based morphometry in classify-
ing individuals with ASD and TDCs. Poor classification 
accuracy indicates that morphological measures are most-
ly indistinguishable at the group level, suggesting the 
cerebral morphology may have limited diagnostic value 
of ASD. This is consistent with previous findings demon-
strating low discriminative power of morphological 
measures in ASD classification [12, 14]. We speculated 

that the unsatisfactory classification performance may 
result from the reduced abnormalities in brain structures 
of adults with ASD [47, 48]: early overgrowth of morpho-
logical structures is compensated by accelerated neuronal 
atrophy in adulthood [49, 50]. In addition, the accuracy 
achieved by CV that significantly exceeded chance-level 
is consistent with the findings of higher discriminative 
power of CV on large sample size [14]. 

4.2 Cortico-cortical similarity captures critical 
abnormalities 

Compared to morphological features, cortico-cortical sim-
ilarity takes the relationship between the target region 
and other brain regions into account, which represents 
the nature of the cortical interplay. The significant im-
provement of classification performance based on MFN 
connections suggests that the relationships among cortical 
structures possess important information and could be 
utilized for diagnostic application of ASD. 

Cortico-cortical similarity may be a more sensitive 
index to capture the coherent abnormalities among brain 
structures in ASD. Although the brain regions linked by 
discriminative connections have been previously reported 
to have significant GM alterations in ASD (e.g., anterior 
cingulate gyrus (ACG) [51], precuneus, and insula [52], 
superior temporal sulcus (STS) [53-55], V1 and inferior 
parietal lobule [56], lateral occipital cortex and paracen-
tral area [57], and inferior and superior frontal gyri [10, 
56]), no significant alterations were found in most of these 
areas in our previous VBM study conducted on the same 
dataset [10], e.g., we did not find significant GM changes 
in MI, ACC, and STS in this dataset, suggesting relatively 
less significant alterations in GM structures. Moreover, 
the limited classification performance of morphological 
measures suggests that the ASD-related structural chang-
es are relatively undetectable. Based on the improved 
classification performance using MFN, we thus speculat-
ed that changes in structural similarity characterize corti-
cal abnormalities in ASD. These changes were represent-
ed as increased differences in long-distance connections 
as reported in studies using other imaging modalities [58-
61], suggesting ASD might affect large-scale cortico-
cortical relationship all over the brain rather than the 
morphology of isolated brain regions. 

There is evidence suggesting that the morphological 
similarities may partially mirror the functional alterations 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. The top 30 discriminative connections evaluat-
ed by two-step feature selection process. Red and blue 
edges indicate the increased and decreased proportion 
of connections in ASD, respectively. Six cerebral lobes 
are labeled with different colors. 
 
 
 

 
 
 
 
 
 
 
 
 

 
Fig. 6. The sagittal and axial views of top 5% brain 
regions that highly associated with discriminative 
connections. Color indicates the magnitude of sum of 
absolute weights of connections linked to the regions. 
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[62]. For instance, significant reductions in CV and CV-
based inter-regional correlation within prefrontal and 
temporal lobes are associated with the schizophrenia in-
duced dissociation in fronto-temporal system [63]. ASD is 
known as associated with complex symptoms affecting 
multiple cognitive functions (e.g., sensory processing, 
emotional and cognitive functions, language, and social 
cognition) [1, 64-68], together with interregional commu-
nications associated with these functions [58, 69-72]. Here, 
the brain regions that were primarily associated with the 
altered connections were mostly in the aforementioned 
functional systems. Specifically, the ventromedial pre-
frontal cortex, insula, and precuneus are key regions for 
socio-emotional processing [73-78], and prefrontal cortex 
is also associated with language processing [79, 80] and 
cognitive control [67, 81, 82]; the V1 and V4 areas belong 
to the visual system [83, 84]; and PMC is the primary re-
gion of the motor system [85]. The high weights of these 
regions suggest their structures are altered in patients 
with ASD, which is consistent with ASD symptomatology, 
including abnormalities in social behavior [86, 87], socio-
emotional processing [61, 88], language [89, 90], basic mo-
tor control [91] and gesture skills [92], visual-motion inte-
gration [93], and response to visual stimuli [94-96]. In ad-
dition, the discriminative pattern was different from our 
previous findings in Alzheimer’s disease and mild cogni-
tive impairment, in which the high-weight connections in 
classification were mostly related to the temporal lobe 
and fronto-temporal cortex [32] which have been reported 
to be primarily associated with disease progression [97-
100]. Therefore, the cortico-cortical similarities among 
brain structures may represent the ASD-specific function-
al deficits and provide critical information for ASD diag-
nosis. 

Although the MFN connections are informative for 
the classification of ASD, the network properties exhibit-
ed no (or limited) discriminative value, suggesting that 
the overall segregation (CC) and integration (GE) of mor-
phological networks in patients with ASD are not abnor-
mal. Although our previous MFN study [101], as well as 
other studies of morphological networks [102-104] indi-
cated altered network properties (e.g., CC and character-
istic path length) and small-word architecture, these stud-
ies mainly focused on neurodegenerative diseases (e.g., 
Alzheimer’s disease) that are accompanied by evident 
GM atrophy. In the present study, because no distinct 
discrimination was found in various morphological 
measures between patients with ASD and TDCs, the con-
nective differences that were mainly caused by structural 
abnormalities were relatively small, and therefore led to 
only slight changes in the overall organization of MFN. 

4.3 Limitations 

Although we have significantly enhanced the classifica-
tion performance based on structural images, our result-
ing performance was only 78.63%, which is not high, and 
is consistent with some previous studies that demonstrat-
ed the limited diagnostic utility of morphological features 
for ASD diagnosis [12, 14]. However, other studies using 
structural images achieved marked performances (accu-

racies up to 90% by using CT, and accuracies up to 81% 
by using CV) in ASD classification [15, 17, 18]. The varia-
bility may be due to the differences in sample sizes, char-
acteristics of participants (e.g., age and IQ), or scanners. 
For this analysis, we used a dataset from multiple centers. 
The performance of the classification for the cross-site 
sample (78.63%) was lower than for single site: SBL 
(92.37%), NYU (88.55%), and ISMMS (83.21%), but slight-
ly higher than the performance of KUL (76.34%). Alt-
hough comparisons between the classification perfor-
mances of single site and across multiple sites was per-
formed, replications on large independent samples would 
still be beneficial to examine the source of variance and 
the generalizability of the findings. The limited perfor-
mance may also be resulted from the exclusion of subcor-
tical tissues, as the construction of the MFN requires mul-
tiple morphological features in each brain region. Subcor-
tical regions (e.g., amygdala and thalamus) were reported 
with significant CV alterations in patients with ASD [105-
107] and significant above chance diagnostic accuracy for 
ASD [12]. The omission of these critical information may 
have negatively impacted the classification performance. 
Further studies may benefit from the inclusion of subcor-
tical structures in the classification. 

5 CONCLUSION 

We utilized Elastic Network to quantify the cortico-
cortical similarity based on 7 morphological features. The 
significant improvement of classification accuracy suggest 
that the cortico-cortical similarity is superior to morpho-
logical features in identifying high-functioning adults 
with ASD, and has potential application value in ASD 
diagnosis. 
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