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a b s t r a c t

Over forty years have passed since the first evidence showing the unbalanced attentional

allocation of humans across the two visual fields, and since then, a wealth of behavioral,

neurophysiological, and clinical data increasingly showed a right hemisphere dominance

for orienting of attention. However, inconsistent evidence exists regarding the right-

hemisphere dominance for executive control of attention, possibly due to a lack of

consideration of its dynamics with the alerting and orienting functions. In this study, we

used a version of the Attentional Network Test with lateralized presentation of the stimuli

to the left visual field (processed by the right hemisphere, RH) and right visual field (pro-

cessed by the left hemisphere, LH) to examine visual field differences in executive control

of attention under alerting and orienting of attention. Analyses of behavioral performance

(reaction time and error rate) showed a more efficient executive control (reduced conflict

effect) in the RH compared to the LH for the reaction time, under conditions of increased

alerting and of informative spatial orienting. These results demonstrate the right-

hemisphere superiority for executive control, and that this effect depends on the

involvement of the alerting and orienting functions.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Executive control of attention plays a central role in human

cognition as the mechanism that allows the selection and

prioritization of the processing of goal-relevant information to
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for the preparation and maintenance of a state of readiness,

and the orienting function for the direction of attention to-

wards relevant features of a stimulus (Fan et al., 2009;
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Petersen & Posner, 2012; Spagna, Mackie, & Fan, 2015). Evi-

dence in favor of a right hemisphere dominance for orienting

of attention came initially from studies of patients with uni-

lateral hemispatial neglect (Bartolomeo, 2007; Bartolomeo &

Chokron, 2002; Chica et al., 2012; Heilman & Van Den Abell,

1980; Kinsbourne, 1987; Lunven & Bartolomeo, 2017;

Mesulam, 1999; Posner, Cohen, & Rafal, 1982; Posner,

Walker, Friedrich, & Rafal, 1984), and were later supported

by most of the behavioral patterns showing better perfor-

mance in orienting to stimuli presented in the left visual field

(processed by the right hemisphere, RH) compared to stimuli

presented in the right visual field (processed by the left

hemisphere, LH) in healthy individuals (De Schotten et al.,

2011; Kincade, Abrams, Astafiev, Shulman, & Corbetta, 2005;

Marotta, Lupianez, & Casagrande, 2012; Shulman et al., 2009;

Smigasiewicz, Westphal, & Verleger, 2017; Vossel, Weidner,

Driver, Friston, & Fink, 2012; Zago et al., 2017; Zuanazzi &

Cattaneo, 2017). Because the purpose of orienting is to ulti-

mately facilitate the processing of information and conflict

resolution (Callejas, Lupianez, Funes, & Tudela, 2005; Callejas,

Lupianez,& Tudela, 2004; Fan et al., 2009) by focusingmore on

the task-relevant feature or location of the imperative stimuli

and therefore achieve cognitive control (Mackie, Van Dam, &

Fan, 2013), theoretically there should be a RH superiority for

the executive control of attention. However, there is incon-

sistent evidence regarding the right-lateralization of the other

specific functions of attention, especially for the executive

control (Asanowicz, Marzecova, Jaskowski, & Wolski, 2012;

Greene et al., 2008; Konrad et al., 2005), with some studies

showing better conflict resolution in the RH compared to the

LH (Asanowicz et al., 2012; Garavan, Ross, & Stein, 1999;

Mecklinger, von Cramon, Springer, & Matthes-von Cramon,

1999; Spielberg et al., 2011), but not in others (Greene et al.,

2008; Konrad et al., 2005; Spagna, Martella, Fuentes, Marotta,

& Casagrande, 2016; Wu, Weissman, Roberts, & Woldorff,

2007). Therefore, whether a RH advantage exists for execu-

tive control remains unclear, and determining the laterality of

this function will further support the notion of RH dominance

for attention (Heilman & Van Den Abell, 1980; Kinsbourne,

1987; Mesulam, 1981; Weintraub & Mesulam, 1987).

The pivotal role of the RH in the allocation of attentional

resources, especially in the visuospatial environment, was

initially (and consistently throughout the past 40 years)

shown by studies in patients with unilateral hemispatial

neglect, a neurological disorder that often follows a lesion to

the right parietal cortex and/or underlying white matter

which results in patients failing to direct their attention to

the contra-lesional (i.e., left) side of the space (Bartolomeo &

Chokron, 2002; Chica, Thiebaut de Schotten, Bartolomeo, &

Paz-Alonso, 2018; Corbetta & Shulman, 2011; Heilman &

Van Den Abell, 1980; Lunven & Bartolomeo, 2017; Mesulam,

1999; Posner et al., 1984; Rafal, 1994; Rastelli et al., 2013;

Toba et al., 2018). This deficit in the ability to select infor-

mation (in other terms “orient”) for goal-directed behavior

following RH damage has been studied in a great deal of

literature regarding the interaction between hemisphere and

this function of attention (e.g., Benwell, Thut, Grant, &

Harvey, 2014; Chica et al., 2012; Foxe, McCourt, & Javitt,

2003; Longo, Trippier, Vagnoni, & Lourenco, 2015; Marotta

et al., 2012; Shulman et al., 2010; Spagna et al., 2016). Based
Please cite this article as: Spagna, A et al., Right hemisphere super
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on this evidence, the hemispatial theory (Heilman & Van Den

Abell, 1980) and the interhemispheric competition account

(Kinsbourne, 1987) are two models proposing alternative

mechanisms underlying the RH advantage of attention:

while the former stated that the RH advantage is rather a

“disadvantage” of the LH that is able to orient only towards

the contralateral visual field (as opposed to the RH that can

direct attention to both visual fields, hence the dominance),

the latter proposed that each hemisphere has its own

“contralateral vector of attention”, and that a lesion to one of

the two hemispheres disrupts the normal balance and favors

the orienting towards the ipsilesional visual field. Perhaps

due to the involvement of both hemispheres in orienting, as

shown in a wealth of neurophysiological studies (Corbetta,

Patel, & Shulman, 2008; Corbetta & Shulman, 2002; Fan,

McCandliss, Fossella, Flombaum, & Posner, 2005; Xuan

et al., 2016), behavioral studies have revealed inconsistent

results concerning this function of attention, with some

studies revealing a RH dominance (exp. 1 of Asanowicz et al.,

2012; Evert, McGlinchey-Berroth, Verfaellie, & Milberg, 2003;

Greene et al., 2008; Kałamała, Dro _zd _zowicz, Szewczyk,

Marzecov�a, & Wodniecka, 2018; Poynter, Ingram, & Minor,

2010; �Smigasiewicz, Asanowicz, Westphal, & Verleger, 2014),

while other studies failed to find a hemispheric asymmetry

(exp. 2 of Greene et al., 2008; Spagna et al., 2016; Tao,

Marzecov�a, Taft, Asanowicz, & Wodniecka, 2011). Contro-

versies also exist regarding the RH superiority of the other

two components, the alerting and executive control func-

tion. Behavioral studies have not found significant visual

field difference for the alerting network in healthy in-

dividuals (Asanowicz et al., 2012; Greene et al., 2008;

Marzecova, Asanowicz, Kriv�A, & Wodniecka, 2012; Spagna

et al., 2016), possibly due to the simplicity of the testing

procedure used, as stronger attentional asymmetries have

been shown to come from more difficult tasks (Jonides, 1979;

Verleger et al., 2009; Welcome & Chiarello, 2008). Nonethe-

less, a greater deficit in alerting has been found after RH

damage to regions of the parietal lobe partially overlapping

with those related to the hemispatial neglect discussed

above (Fernandez-Duque & Posner, 2001; Petersen & Posner,

2012; see also; Posner, 2008). For the executive control,

behavioral evidence of an hemispherical asymmetry mostly

derives from a lateralized version of the Stroop task (Stroop,

1935), a task that heavily relies on the well-known left-lat-

eralized language function, and a RH advantage for conflict

processing has been found in some studies (Asanowicz et al.,

2012; Kałamała et al., 2018; Marzecova et al., 2012; Poynter

et al., 2010; Weekes & Zaidel, 1996) but not in others

(Belanger & Cimino, 2002; Greene et al., 2008; Konrad et al.,

2005; Spagna et al., 2016). Overall, whether a RH dominance

of attention exists across all three functions remains un-

clear, along with the mechanisms responsible for such uni-

lateral advantage of attention.

A potential reason for the above-mentioned inconsistent

results, especially regarding the executive control function,

may reside in the neglected consideration of the interplay

among the components (Badre, 2011) that leads to the unitary

construct of attention. Although initially conceived as three

independent components, both in terms of function (Fan,

McCandliss, Sommer, Raz, & Posner, 2002) and associated
iority for executive control of attention, Cortex, https://doi.org/
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brain structure (Fan et al., 2005), the interplay between the

alerting, orienting, and executive control was soon after

identified as a key component in the prioritization of mental

computations (Callejas et al., 2005; Callejas et al., 2004; Chica

et al., 2012; Fan et al., 2009; Liu, Bengson, Huang, Mangun, &

Ding, 2016; Macaluso, 2010; Martella, Casagrande, &

Lupianez, 2011; Spagna, Dong, et al., 2015; Spagna, Mackie,

et al., 2015; Spagna et al., 2014). For example, efficient dy-

namics among these functions may ameliorate the inatten-

tional symptoms associated with hemispatial neglect (Chica

et al., 2012), which may open critical rehabilitation perspec-

tives (Manly, Hawkins, Evans, Woldt, & Robertson, 2002;

Robertson, Manly, Andrade, Baddeley, & Yiend, 1997). Evi-

dence of modulatory effects involving the alerting function

were first observed in studies showing the beneficial effect of

an alerting cue on the orienting function (Fernandez-Duque &

Posner, 1997; Fuentes & Campoy, 2008; Li, Liu, Huang, &

Huang, 2018; Mullane, Lawrence, Corkum, Klein, &

McLaughlin, 2016; Wiegand, Petersen, Bundesen, &

Habekost, 2017), and the detrimental effect of an alerting

cue (whether visual or auditory) in conflict resolution

(Asanowicz &Marzecov�a, 2017; Callejas et al., 2004, 2005; Zani

& Proverbio, 2017). The synergistic cooperation between the

endogenous (i.e., voluntary) orienting and executive control

function has also been shown in the form of a more precise

selection of target information reducing the distracting effect

of irrelevant information (Callejas et al., 2005; Callejas et al.,

2004; Fan et al., 2009; Fuentes & Campoy, 2008; Spagna,

Mackie, et al., 2015), while exogenous (i.e., automatic) orient-

ing has been shown to impair conflict resolution (Trautwein,

Singer, & Kanske, 2016). Executive control has been pro-

posed to be located at the top of a hierarchical structure and

acting irrespectively of sensory modalities (i.e., supramodal)

(Donohue, Liotti, Perez, & Woldorff, 2012; Moris Fernandez,

Macaluso, & Soto-Faraco, 2017; Roberts & Hall, 2008; Spagna

et al., 2017; Spagna, Mackie, et al., 2015), with the alerting and

orienting functions being located at a lower level and tied

more to modality-specific mechanisms (Bushara et al., 1999;

Langner et al., 2011; Salmi, Rinne, Degerman, Salonen, &

Alho, 2007; Thiel & Fink, 2007; Ward, 1994; Yang & Mayer,

2013). Therefore, investigating the hemispherical asymme-

tries of the executive control under different states of alerting

and orienting may provide useful insights on the dynamics

fromwhich attention emerges as a unitary cognitive function.

In this study we employed the visual field methodology

(Bourne, 2006) to examine the efficiency and interactions of

the attentional networks separately in the RH and LH. The

hemispherical asymmetry of the executive control was

investigated under different alerting and orienting conditions

by using a lateralized version of the attentional network test

(LANT-R). In this task, the hemispherical difference for exec-

utive control of attention was examined by presenting the

target in the left or right visual field, under the conditions of

congruent or incongruent flankers to generate the conflict

effect, preceded by bilateral or unilateral visual cues to trigger

the alerting and the orienting functions, respectively. We

predicted a RH superiority in the executive control function, as

shown by a reduced conflict effect, and that such superiority

should be facilitated by the engagement of alerting and ori-

enting functions.
Please cite this article as: Spagna, A et al., Right hemisphere super
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2. Method and materials

2.1. Participants

Fifty students taking the Introduction to Psychology course at

Queens College, the City University of New York (CUNY)

participated in this study. Data from two participantswere not

included in the analyses due to low accuracy (approaching

chance level) and an overall response time (RT) greater than

two standard deviations (SD) from the group mean. The

remaining participants (n ¼ 48) consisted of 40 females and 8

males, with an average age of 20.8 years old (SD ¼ 3.22),

ranging from 18 to 25. All but one participant were right-

handed, and all participants had normal or corrected-to-

normal vision. Written informed consent approved by the

Institutional Review Board of Queens College, CUNY was ob-

tained from all participants prior to participation.

2.2. The lateralized attention network test - revised
(LANT-R)

The LANT-R is a modified version of the revised attention

network test (Fan et al., 2009) to measure the hemispherical

differences in the efficiency of the attentional functions

(alerting, orienting, executive control) and their interactions.

Fig. 1 illustrates the sequence of events of the LANT-R. On the

screen with a gray background, there were two vertically

aligned rectangular boxes with a black outline respectively

located to the left and right of a central fixation cross. For each

trial, five arrows appeared in either the left or right box, with

the center arrow (the target) pointing either up or down, and

the other arrows located above or below the target pointing

either toward the same direction (flanker congruent condi-

tion) or toward the opposite direction (flanker incongruent

condition). Participants were required to indicate the direction

of the target by pressing the corresponding button on the

mouse. The target was cued under one of the three cueing

conditions: double cue (i.e., the outline of both boxes changing

from black to white), spatial cue (the outline of one of the

boxes changing from black to white), or no cue (no change in

the outline of any of the boxes). The double cuewas used as an

alerting stimulus by providing temporal information about

the impending target, regardless of location. The spatial cue

was designed to validly or invalidly orient the participant's
attention to either the left or the right side, thus providing

both temporal and spatial information about the impending

target. Ineach trial, participants were required to indicate the

direction of a central arrow surrounded both above and below

by two flanker arrows, either pointing in the same (congruent)

or in the opposite (incongruent) direction as the target.

The size of the central fixation cross, located in the middle

of the screen and visible throughout the entire task, was 1� of
visual angle. The five black arrows that appeared on either

side were .56� in lenght each. The arrows were separated by

.06� of space, and the stimuli (target arrow and the flankers)

subtended a total of 3.27�. Each box was 3.50� in size and was

located 5� from its center to the central fixation cross. Pre-

ceding the target by three cue-to-target intervals (0 msec,

400msec, 800msec) equally likely to be presented, the change
iority for executive control of attention, Cortex, https://doi.org/
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Fig. 1 e Schematic of the Lateralized Attention Network Test e Revised (LANT-R).In each trial, participants were required to

indicate the direction of a central arrow surrounded both above and below by two flanker arrows, either pointing in the

same (congruent) or in the opposite (incongruent) direction as the target.
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in the outline of the boxes fromblack towhite lasted 100msec,

then the target and flankers were presented for 500 msec.

Following the arrow presentation, there was a variable inter-

trial interval ranging from 2000 to 12000 msec, with a mean

interval of 4000 msec. Each trial had a mean duration of

5000 msec. The test consisted of 4 blocks, with each block

containing 72 trials. On half of the trials (i.e., 144), the partic-

ipant was shown a valid spatial cue, while the remaining trials

were equally divided in 48 trials of a double cue condition, 48

trials of an invalid spatial cue condition, and 48 trials of a no

cue condition. There was equal number of trials in the

congruent and incongruent condition. In total, each block took

420 sec to be completed, and the entire experiment took

around 30 min to be completed. Prior to the beginning of the

experimental session, the participant completed a short

practice session consisting of 32 trials. During the practice

session, participants were provided with feedback on accu-

racy and response time on each trial.

The practice session and the experimental session pro-

vided instructions on the computer screen. It was empha-

sized that the participants fixate on the central fixation cross

for the duration of each trial and press the mouse button

that corresponded to the direction of the target arrow as

quickly and accurately as possible. The mouse was rotated

90� to the left, so that the right mouse button indicated “up”,

and the left mouse button indicated “down”. The mouse was

also aligned to the middle of the computer screen and par-

ticipant's midline of the body. To diminish the effects of

hemispheric bias through motor control, the participant

used both hands on the mouse to respond (Gable, Poole, &

Cook, 2013): the right index finger was used to press the

up-button while the left index finger was used to press the

down-button. The task was displayed on a 17-inch LCD

monitor, and the LANT-R was programmed in E-Prime

(Psychology Software Tools, Pittsburgh, PA). Each participant
Please cite this article as: Spagna, A et al., Right hemisphere super
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completed the testing on a computer located in a silent and

well-illuminated room.

2.3. Operational definition of the attentional effects and
interactions

A 4 � 2 � 2 factorial design was used in this experiment, with

cue condition (no cue, double cue, valid cue, invalid cue), conflict

condition (congruent, incongruent), and visual field (left, right)

as within-subject factors. The same operational definitions for

the attentional functions presented originally in (Fan et al.,

2009) were used to estimate the attentional effects and are

shown in Table 1. The alerting effect represents the perfor-

mance benefit produced by the increased arousal compared to

the no cue condition. The orienting effect is equivalent to

moving þ engaging operation defined in (Fan et al., 2009) and

represents the performance benefit produced by a valid

spatial information compared to the temporal information

provided by an alerting cue. The disengaging effect represents

the cost of disengaging from an invalid spatial cue. Combining

the disengaging operation and themoving þ engaging operation

leads to the validity effect, which represents the extent to

which a valid spatial cue condition benefits the participant's
performance compared to the cost in performance due to the

invalid spatial cue condition. The conflict effect represents the

cost in solving the conflict caused by the incongruent flankers,

and a larger conflict effect corresponds to a less efficient ex-

ecutive control function (Fan et al., 2002). The interaction ef-

fects between these attentional functions were calculated by

comparing the conflict effects under different cue conditions:

alerting by conflict interaction effect, with a negative value in RT

indicating a negative impact of alerting on conflict processing.

Orienting by conflict interaction effect, with a positive value in RT

indicating a more efficient conflict processing because of ori-

enting. Disengaging by conflict interaction effect, with a positive
iority for executive control of attention, Cortex, https://doi.org/
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Table 1 e Operational definition of the attentional effects and interactions.

Alerting effect No cue minus Double cue

Orienting effect Double cue minus Valid cue

Disengaging effect Invalid cue minus Double cue

Validity effect Invalid cue minus Valid cue

Conflict effect Flanker incongruent minus Flanker congruent

Alerting by Conflict No cue, Incongruent

minus no cue, congruent

minus Double cue, Incongruent minus Double cue, Dongruent

Orienting by Conflict Double cue, Incongruent minus Double

cue, Congruent

minus Valid cue, Incongruent minus Valid cue, Congruent

Disengaging by Conflict Invalid cue, Incongruent minus Invalid

cue, Congruent

minus Double cue, Incongruent minus Double cue, Congruent

Validity by Conflict Invalid cue, Incongruent minus Invalid

cue, Congruent

minus Valid cue, Incongruent minus Valid cue, Congruent

c o r t e x x x x ( x x x x ) x x x 5
value in RT indicating a less efficient conflict processing

because of invalid orienting compared to an alerting cue.

Validity by conflict interaction effect, with a positive value in RT

indicating a less efficient conflict processing because of

invalid orienting compared to a valid orienting cue. All the

above-defined effects and interactions were computed sepa-

rately for the RH and LH, according to the location where

target and flankers were presented.

2.4. Data analyses

MeanRTand error ratewere calculated for each condition,with

error trials (incorrect or missing responses) (less than 2% per

subject) and RT outliers (above and below two SD) (less than

2.23% per subject) being excluded from analyses on RT. Hemi-

spherical differences in attentional effects, overall RT, and error

rate, were tested using paired-sample t tests (one-tailed, hy-

pothesizing a RH advantage). Effect sizes are reported as

Cohen's d. Further, a 4� 2� 2 ANOVAwas conducted to test for

the presence of omnibus effects and interactions among cue

conditions, congruent conditions, and the visual fields. Planned

comparisons were then conducted to analyze significant in-

teractions between the conflict effect and the alerting, orient-

ing, disengaging, and validity effectswere tested using 2� 2� 2

ANOVAs, with an alpha-level set to .05. Specifically, a 2 (Hemi-

sphere: RH, LH) � 2 (Alerting: no cue, double cue) � 2 (Conflict:

congruent, incongruent) was conducted to identify differences

in the alerting � conflict interaction in the two hemispheres. A

2 (Hemisphere: RH, LH) � 2 (Orienting: double cue, valid cue) � 2

(Conflict: congruent, incongruent) was conducted to examine

the orienting � conflict interaction in each hemisphere. A 2

(Hemisphere: RH, LH) � 2 (Disengaging: invalid cue, double

cue) � 2 (Conflict: congruent, incongruent) was conducted to

examine the disengaging � conflict interaction in each hemi-

sphere. A 2 (Hemisphere: RH, LH) � 2 (Validity: invalid, valid

cue) � 2 (Conflict: congruent, incongruent) was conducted to

examine the validity � conflict interaction in each hemisphere.

Effects sizes are reported as partial eta squared (h2).
3. Results

Table 2 shows the RT and error rate for all conditions, sepa-

rately for each hemisphere. The overall mean RT was 598msec

(SD ¼ 95 msec), and the overall mean error rate was 9.12%
Please cite this article as: Spagna, A et al., Right hemisphere super
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(SD ¼ 9.90). Participants were significantly faster at responding

to stimuli presented to the RH (598 ± 93 msec) compared to the

LH (602 ± 96 msec, t(47) ¼ �2.71, p < .05, d ¼ .04), while this

difference was not significant for the error rate (RH:

9.02 ± 10.00%, LH: 9.22 ± 9.82%, t(47) ¼ �.42, p ¼ .97, d ¼ .02).

3.1. Hemispherical differences in the attentional effects

Fig. 2 shows the alerting, orienting, disengaging, validity, and

conflict effects separately for each hemisphere. For the alert-

ing effect, the hemispherical difference was not significant in

RT [RH: 44 ± 37 msec, LH: 33 ± 36 msec, t (47) ¼ 1.42, p ¼ .08,

d ¼ .29], as well as in error rate [RH: 2.52 ± 7.23%, LH:

1.30 ± 6.50%, t (47) ¼ 1.19, p ¼ .12, d ¼ .24]. For the orienting

effect, the hemispherical difference was significant in RT [t

(47) ¼ 2.66, p < .01, d ¼ .54], indicating that the orienting effect

was smaller when stimuli were presented to the RH

(34 ± 28 msec) compared to the LH (53 ± 33 msec). This effect

was also significant in error rate [t (47) ¼ 2.92, p < .001, d ¼ .59],

with a smaller effect when stimuli were presented to the RH

(.14 ± 5.89%) compared to the LH (3.18 ± 5.73%). For the dis-

engaging, the hemispherical differencewas significant in RT [t

(47) ¼ 2.66, p < .01, d ¼ .54], indicating the disengaging effect

was greater when stimuli were presented to the RH

(62 ± 40 msec) compared to the LH (44 ± 34 msec). This effect

was also significant in error rate [t (47) ¼ 2.93, p < .001, d ¼ .60],

with a greater effect when stimuli were presented to the RH

(7.03 ± 8.02%) compared to the LH (2.34 ± 7.03%). For the val-

idity effect, the hemispherical difference was not significant

in RT [RH: 96 ± 36 msec, LH: 99 ± 38 msec, t (47) ¼ .07, p ¼ .94,

d ¼ .01] as well as in error rate [RH: 7.17 ± 7.81%, LH:

5.52 ± 6.71%, t (47) ¼ 1.27, p ¼ .21]. For the conflict effect (see

also Fig. 3), the hemispherical difference was significant in RT

[t (47)¼ .15, p < .01, d¼ .03], showing a smaller conflict effect in

the RH (106 ± 58 msec) compared to the LH (127 ± 56 msec),

while this effect was not significant in error rate [RH:

12.17 ± 10.17%, LH: 12.01 ± 11.48%, t (47) ¼ .14, p ¼ .89, d ¼ .03].

3.2. Hemispherical differences in terms of main effects
and interactions

For the analysis conducted in RT, (the top panel of Fig. 4), the

main effect of the factor Cue was significant, [F (1, 47) ¼ 233.61,

p < .001, h2 ¼ .83], indicating that participants were faster in the

valid cue condition (548 ± 94msec) compared to the double cue
iority for executive control of attention, Cortex, https://doi.org/
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Table 2 e Mean reaction time in ms (±SD) and Error Rate in percentage (±SD) for each task condition and separately for the
two hemispheres.

Congruent Incongruent

No cue double valid invalid No cue double valid invalid

RT

RH 563 (67) 529 (70) 504 (66) 568 (73) 687 (112) 634 (111) 590 (90) 719 (118)

LH 570 (87) 531 (68) 493 (61) 573 (78) 702 (109) 675 (107) 606 (96) 720 (108)

ER

RH 2.95 (5.83) 1.56 (3.71) 2.43 (4.27) 3.82 (6.19) 14.93 (14.17) 11.28 (12.45) 10.13 (10.53) 23.09 (18.05)

LH 4.17 (6.66) 2.95 (4.70) 1.80 (2.40) 2.26 (4.46) 15.80 (13.12) 14.41 (15.54) 9.20 (9.54) 19.79 (17.58)

c o r t e x x x x ( x x x x ) x x x6
(592 ± 111msec, p < .001), no cue (631 ± 114msec, p < .001), and

invalid cue (645± 121msec, p < .001). Further, participants were

faster in the double cue condition compared to the no cue con-

dition (p< .001) and invalid cue condition (p< .001), and faster in

the no cue compared to the invalid cue condition (p < .05). The

maineffectof the factorConflictwassignificant [F (1, 47)¼ 218.89,

p < .001, h2 ¼ .82], indicating that participants were faster in the

congruent condition (541 ± 77 msec) compared to the incon-

gruent condition (667± 116msec ). Themain effect of the factor

Hemisphere was significant [F (1, 47) ¼ 7.32, p < .01, h2 ¼ .14],

indicating that participants were faster in response to stimuli

presented to the RH (599 ± 114 msec) compared to stimuli
**

***

**

***

**

Fig. 2 e Attentional effects and interactions in terms of

reaction time (top panel), and error rate (lower panel). Error

bars represent the standard error of the mean. **¼ < .01;

*** ¼ p < .001.
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presented to the LH (609 ± 119 msec ). The interaction Cue by

Conflictwas significant, [F (3, 141) ¼ 15.10, p < .001, h2 ¼ .24], the

interaction Cue by Hemisphere was significant [F (3, 141) ¼ 3.64,

p < .05, h2 ¼ .07], the interaction Conflict by Hemisphere was sig-

nificant [F (1, 47) ¼ 13.14, p < .001, h2 ¼ .22], and the three way

interactionCue byConflict byHemispherewasalso significant [F (3,

141) ¼ 4.26, p < .01, h2 ¼ .08]. In line with the hypothesis driven

nature of the current manuscript, planned comparisons were

conducted to further analyze these interactions (see section

below).

For the analysis conducted in Error rate, (the lower panel of

Fig. 4), the main effect of the factor Cue was significant, [F (1,

47) ¼ 24.95, p < .001, h2 ¼ .35], indicating that participants

committed fewer errors in the valid cue condition

(5.89 ± 8.37%) compared to the no cue (9.46 ± 12.10%, p < .001),

and invalid cue (12.24 ± 16.04msec ), while the difference was

not significant compared to the double cue (7.55 ± 11.67%,

p ¼ 09). Further, participants made fewer errors in the double

cue condition compared to the invalid cue condition (p < .001)

while this difference was not significant compared to the no

cue condition (p ¼ .17). The difference between no cue and

invalid cue trials was significant (p < .05), indicating that

participants committed fewer errors in the no cue condition.

The main effect of the factor Conflict was significant [F (1,

47) ¼ 68.58, p < .001, h2 ¼ .59], indicating that participants

made fewer errors in the congruent condition (2.74 ± 4.98%)

compared to the incongruent condition (14.83 ± 14.74%,
Fig. 3 e Average reaction time (left panel) and error rate

(right panel) for the congruent and incongruent conditions.

Error bars represent the standard error of the mean.

*** ¼ p < .001.
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Fig. 4 e Average reaction time (top panel) and error rate (lower panel) for the four cue conditions: a) no cue; b) double cue; c)

valid cue; d) invalid cue, separately for the incongruent and congruent conditions and for stimuli presented in the RH or LH.

Error bars represent the standard error of the mean.
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p < .001). The main effect of the factor Hemisphere was not

significant (F < 1). The interaction Cue by Conflict [F (3,

141) ¼ 21.09, p < .001, h2 ¼ .31] and the Cue by Hemisphere in-

teractions [F (3, 141) ¼ 5.05, p < .01, h2 ¼ .10] were significant,

while the Orienting by Conflict (F <1), the Conflict by Hemisphere

(F < 1), and the three way interaction Cue by Conflict by Hemi-

sphere (F < 1) were not. In line with the hypothesis driven

nature of the current manuscript, planned comparisons were

conducted to further analyze these interactions (see section

below).

3.3. Hemispherical differences in terms of the
interactions between attentional functions

For brevity, here we report only results of the three-way

interactions between the conflict effect and the hemi-

spheres under different cue conditions, which are the focus

of the current paper. A full depiction of the results regarding

the 2 (Hemisphere) � 2 (Cue conditions) � 2 (Conflict) ANOVAs

can be found in Fig. 5, and a full description can be found in

Table S1.
Please cite this article as: Spagna, A et al., Right hemisphere super
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3.3.1. The alerting by conflict interaction
For the 2 (Hemisphere: RH, LH) � 2 (Alerting: no cue, double

cue) � 2 ANOVA (Conflict: congruent, incongruent) conducted

on the RT (the top panel of Fig. 5a), the three-way interaction

was significant [F (1, 47)¼ 4.03, p¼ .05, h2 ¼ .08]. The follow-up

analysis conducted on the Hemisphere by Conflict interaction

separately for the no cue and double cue conditions showed

that for the no cue condition, showed that the two-way

interaction was not significant (F < 1), while for the double

cue condition the two-way interaction was significant [F (1,

47) ¼ 18.49, p < .001, h2 ¼ .28], showing that participants were

significantly faster at the incongruent condition when stimuli

were presented to the RH (634 ± 111msec) compared to the LH

(675 ± 107 msec, p < .001). For the ANOVA conducted on error

rate (the bottom panel of Fig. 5a), the three-way interaction

was not significant (p � .24).

3.3.2. The orienting by conflict interaction
For the 2 (Hemisphere: RH, LH) � 2 (Alerting: double cue, valid

cue) � 2 ANOVA (Conflict: congruent, incongruent) conducted

on the RT (the top panel of Fig. 5b), the three-way interaction
iority for executive control of attention, Cortex, https://doi.org/
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Fig. 5 e Average reaction time (top panel) and error rate (lower panel) for the interactions between the task conditions: a)

alerting by conflict; b) orienting by conflict; c) disengaging by conflict; d) validity by conflict. Error bars represent the

standard error of the mean.
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was not significant [F (1, 47) ¼ 1.33, p ¼ .25, h2 ¼ .03]. For the

ANOVA on error rate (the bottom panel of Fig. 5b), the three-

way interaction was also not significant (p � .38).

3.3.3. The disengaging by conflict interaction
For the 2 (Hemisphere: RH, LH) � 2 (Alerting: double cue, invalid

cue) � 2 (Conflict: congruent, incongruent) ANOVA conducted

on the RT (the top panel of Fig. 5c), the three-way interaction

was significant [F (1, 47) ¼ 15.38, p < .001, h2 ¼ .25]. The follow-

up analysis conducted on theHemisphere by Conflict interaction

separately for the invalid cue and double cue conditions

showed that for the invalid cue condition, the two-way

interaction was not significant (F < 1), while it was signifi-

cant for the double cue condition, [F (1, 47) ¼ 18.49, p < .001,

h2 ¼ .28], showing that participants were significantly faster at

the incongruent conditionwhen stimuli were presented to the

RH (634 ± 111 msec) compared to the LH (675 ± 107 msec,

p < .001), while this difference was not significant for the

congruent condition (RH: 529 ± 70 msec, LH: 531 ± 68 msec,

p ¼ .74). For the ANOVA conducted on error rate (the bottom

panel of Fig. 5c), the three-way interaction was not significant

(p � .36).

3.3.4. The validity by conflict interaction
For the 2 (Hemisphere: RH, LH) � 2 (Alerting: double cue, invalid

cue) � 2 (Conflict: congruent, incongruent) ANOVA conducted

on the RT (the top panel of Fig. 5d), the three-way interaction

was significant [F (1, 47) ¼ 7.27, p < .01, h2 ¼ .13]. The follow-up

analysis conducted on the Hemisphere by Conflict interaction

separately for the valid cue and invalid cue conditions showed

that for the valid cue condition, the two-way interaction was
Please cite this article as: Spagna, A et al., Right hemisphere super
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significant [F (1, 47) ¼ 25.23, p < .001, h2 ¼ .35], indicating that

for the congruent condition participantswere slower in the RH

(503 ± 66 msec) compared to the LH (493 ± 61 msec), while in

the incongruent condition participants were faster in the RH

(590 ± 90 msec) compared to the LH (606 ± 95 msec). For the

invalid cue condition, the two-way interaction was not sig-

nificant (F < 1). For the ANOVA conducted on error rate (the

bottom panel of Fig. 5d), the three-way interaction was not

significant (p � .36).
4. Discussion

In the present study, we used a lateralized version of the ANT-

R and the visual field methodology to examine the efficiency

and interactions of the attentional networks separately in the

RH and LH, with a specific focus to the hemispherical asym-

metry of the executive control under different alerting and

orienting conditions. In summary, significant behavioral dif-

ferences were found for the orienting, disengaging, and ex-

ecutive control of attention, and interactions between either

the alerting and the orienting function with the executive

control of attention, showing an advantage in all these func-

tions for the RH. These results supports the long-standing

proposal of a RH advantage for the orienting of attention

and extend it to also include hemispherical asymmetries for

executive control of attention. Specifically, the RH advantage

in conflict resolution occurs under conditions of increased

alertness or valid spatial orienting, suggesting a synergistic

dynamic among the three functions. Nonetheless, our results

showed no evidence for a hemispherical difference in the
iority for executive control of attention, Cortex, https://doi.org/
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spatial cue conditions (i.e., no difference between left or right

cues for either valid or invalid conditions). Therefore, we have

no evidence for a “disadvantage” of the LH compared to the RH

in the orienting of attention (a result that would have favored

the hemispatial theory (Heilman & Van Den Abell, 1980), and

while it is plausible that, in line with the interhemisperic

competition account (Kinsbourne, 1987), each hemisphere has

its own contralateral vector of attention, although the lack of

lesion data makes our conclusion speculative.

Consistent with our (Fan et al., 2009; Mackie et al., 2013;

Spagna, Mackie, et al., 2015) and other studies (Asanowicz &

Marzecov�a, 2017; Callejas et al., 2004, 2005; Chica et al., 2012;

Marotta et al., 2012; Roca et al., 2012), a complex pattern of in-

teractions was shown among the three attentional functions,

further proving that the interplay among them is necessary for

the selection and prioritization of the processing of goal-

relevant information (Badre, 2011). For instance, we found that

indicating the location where the target would be presented by

means of a valid spatial cue reduced the conflict effect by

decreasing the response time to a target flanked by incongruent

information. This is consistentwith previous evidence showing

thebeneficial effectof theendogenousorienting functionon the

executive control of attention (e.g.,Callejasetal., 2005; Fanetal.,

2009; Spagna, Mackie, et al., 2015; Xuan et al., 2016), and our

results further extend this knowledge to the exogenous orient-

ing function, by showing that the conflict resolution benefited

more from a valid cue compared to an invalid cue when the

process was conducted by the RH. Conversely, a wealth of

studies showed that the presentation of an alerting cue has a

cost on the conflict resolution (Asanowicz & Marzecov�a, 2017;

Callejas et al., 2004, 2005; Xuan et al., 2016), a pattern theoreti-

cally linked to a “U-shape” relationship (and justified by the

norepinephrine doseeresponse relationship underlying the

alerting function (Aston-Jones & Cohen, 2005)), with a phasic

increase of the arousal state altering the efficiency of the exec-

utive controlofattention (Thiele&Bellgrove, 2018). In this study,

however, we show a pattern of facilitation produced by an

alerting cue on the conflict resolution when stimuli were pro-

cessed by the RH compared to the LH, indicating the superiority

of this hemisphere in conflict resolution is benefited by the

engagement of the alerting function.At a closer look, our results

and the evidence from the previous studies can coexist due to

the following reasons: 1)wealso showagreater conflict effect in

the double cue condition compared to the no cue condition,

when averaging performance across the two hemispheres; 2)

however, if further broken down into the specific task condi-

tions, the above mentioned effect reveals that participants

showed overall better performance at the double cue compared

to the no cue effect; and 3) the interaction between these two

components of attention within each visual field shows that a

double cue condition was significantly less beneficial to the

conflict processing in the LH. While the most obvious explana-

tion for this interaction effect is to state a RHadvantage for both

alerting, executive control, and their interaction, it may also be

that theworsening of the conflict resolution in the LHunder the

alerting condition results from more limited attentional re-

sources of this hemisphere that more quickly are exhausted

when the two functions are contextually engaged.

Consensus exists regarding the neural substrate supporting

the activation of interactive attentional networks (Xuan et al.,
Please cite this article as: Spagna, A et al., Right hemisphere super
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2016), showed as a complex pattern of interaction among

cortical and subcortical areas (Petersen & Posner, 2012). Spe-

cifically, a bilateral fronto-parietal network (composed of the

frontal eye fields, areas near and along the intraparietal sulcus,

and the dorsolateral prefrontal cortex), a cingulo-opercular

network (composed of the anterior cingulate cortex and the

anterior insular cortex), and subcortical areas such as the

thalamus, superior colliculi, and the basal ganglia, were found

to consistently interact during attentional tasks (Callejas,

Shulman, & Corbetta, 2014; Corbetta et al., 2008; Corbetta &

Shulman, 2002; Fan et al., 2005; Krauzlis, Lovejoy, & Z�enon,

2013; Parlatini et al., 2017; Patel et al., 2015; Posner, 2012;

Posner & Fan, 2008; Shulman et al., 2009; Wang et al., 2010;

Xuan et al., 2016). However, bilateral involvement and func-

tional asymmetries are notmutually exclusive properties in our

brain (Arbula et al., 2017; Bartolomeo & Thiebaut de Schotten,

2016; Corballis, 2009, 2017; Vallesi, Arbula, Capizzi, Causin, &

D'Avella, 2015), and the existence of hemispherical differ-

ences for executive control of attention in terms of activation

magnitude seems plausible. This is particularly true if we

consider that the function of executive control of attention is to

allow the selection and prioritization of the processing of goal-

relevant information to reach consciousness (Fan, Fossella,

Sommer, Wu, & Posner, 2003; Mackie & Fan, 2017; Mackie

et al., 2013; Petersen & Posner, 2012; Spagna, Mackie, et al.,

2015) and that this function inevitably interacts with the

hemispherical specializations related to the specific type of

information to be handled (Marotta & Casagrande, 2017;

Spagna et al., 2014, 2016). More specifically, hemispherical

asymmetries were first identified in “split brain” patients (i.e.,

corpus calloscotomy intervention as part ofmedical treatment)

(Sperry, 1968), one of the earliest evidence for hemispheric

dominance for verbal and language functions in the LH and for

non-verbal and spatial functions in the RH (see Bartolomeo &

Thiebaut de Schotten, 2016 for a review). In the present study,

we used non-verbal information as imperative stimuli, an

aspect that might have magnified the subtle interactions

among the executive control of attention and the hemispheric

dominance of the RH for this type of stimuli.

Alternatively, the RH advantage in conflict resolution may

be explained by brain mechanisms revealed in neuroimaging

studies. Neuroimaging evidence for a RH dominance associ-

ated with the executive control of attention exist at the

functional level (Garavan et al., 1999), as shown by the asso-

ciation between participants' monitoring of task contin-

gencies and the activation of prefrontal cortex in the RH (see

Vallesi, 2012 for a review; Vallesi & Crescentini, 2011),

response inhibition and the association with the right inferior

frontal cortex (Aron, Robbins, & Poldrack, 2014; Cai, Ryali,

Chen, Li, & Menon, 2014; Levy & Wagner, 2011), increased

metabolic activity in the medial prefrontal cortex associated

with monitor the auditory environment (Cohen, Semple,

Gross, King, & Nordahl, 1992), and the anterior cingulate cor-

tex of the RH for response selection (Turken & Swick, 1999),

motor control (Paus, 2001) and attention shifting (Kondo,

Osaka, & Osaka, 2004). Further, regions within the frontal

and parietal lobes of the right hemisphere have been consis-

tently shown to play a critical role in themore broad construct

of attention, by modulating activity in the sensory cortices

(Bressler, Tang, Sylvester, Shulman, & Corbetta, 2008; Ruff
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et al., 2009), and by dynamically adjusting the focus of atten-

tion (Malhotra, Coulthard, & Husain, 2009; Marshall, O'Shea,
Jensen, & Bergmann, 2015; O'Shea, Muggleton, Cowey, &

Walsh, 2004; Ronconi, Basso, Gori, & Facoetti, 2014). Consis-

tently, in one of our previous studies using the ANT together

with fMRI (Fan et al., 2005), in which the presentation of the

stimuli was not lateralized, we showed a significant activation

of the right temporo-parietal junction for the alerting func-

tion, together with clusters in the right parietal lobe for the

orienting function, and a right-centered cluster of anterior

cingulate cortex activation for executive control of attention.

Together with the evidence regarding the necessity of the

fronto-parietal and cingulo-opercular networks of the RH for

both the alerting (Li et al., 2016; Li et al., 2018; Perin, Godefroy,

Fall, & de Marco, 2010; Posner, 2008) and orienting

(Bartolomeo, 2014; Bartolomeo, Thiebaut de Schotten, &

Chica, 2012; Chica et al., 2012, 2018; Mesulam, 1999), this

neuroimaging evidence is in support of the findings from the

present study regarding the executive control of attention.

One limitation of the present studymust be, however, kept

in mind. Here, we did not employ eye tracking techniques and

therefore have no direct measure of the eye position of par-

ticipants throughout the task. Thismay limit the conclusion of

our studies, because eye movements must be avoided at all

costs for the lateralized presentation to work. However, care-

fully instructing participants before the beginning of the task

regarding the relevance of maintaining central fixation can be

effective in controlling eyemovements (e.g., Moscovitch, 1986;

Smigasiewicz et al., 2010; Verleger et al., 2009; Verleger,

Smigasiewicz, & Moller, 2011; �Smigasiewicz et al., 2014).

Additionally, a variety of behavioral studies investigating the

hemispherical differences in the attentional functions using

behavioral tasks with lateralized stimuli found interactions

between the attentional functions and the visual fieldwith and

without using eye-tracker. It is worth noting that the lack of a

control of eye movement may have a negative impact so that

the hemispheric difference would not be significant. Here, we

are not making conclusions about the negative findings

(absence of hemispherical advantage) but on the positive

findings (presence of hemispherical advantage of the RH). In

other words, the significant difference between hemisphere

should not be due to the presence of eyemovement, but due to

the true effect in terms of hemispherical difference. Overall,

although the lack of control of participants’ central fixation

limits the validity of our conclusion regarding the orienting

effect, it is not as relevant for our result concerning the exec-

utive control of attention, which was the focus of the study.

Our study is consistent with existing behavioral and neural

evidence indicating a RH advantage for attention, and further

provides novel knowledge regarding how this advantage also

extends to the executive control of attention and its dynamics

with the alerting and orienting functions. These results may

shed light on some of the inconsistencies shown in previous

studies thatdidnotfindRHdominance forexecutivecontroland

for the interplay between the three functions, and pave theway

for future studies by combining our task with neuroimaging

techniques, aimed at characterizing the neural dynamics un-

derlying the RH advantage for executive control of attention.
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