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ABSTRACT: Recent evidence suggests that the hippocampus, a region
critical for long-term memory, also supports certain forms of high-level
visual perception. A seemingly paradoxical finding is that, unlike the
thresholded hippocampal signals associated with memory, the hippo-
campus produces graded, strength-based signals in perception. This arti-
cle tests a neurocomputational model of the hippocampus, based on the
complementary learning systems framework, to determine if the same
model can account for both memory and perception, and whether it
produces the appropriate thresholded and strength-based signals in
these two types of tasks. The simulations showed that the hippocampus,
and most prominently the CA1 subfield, produced graded signals when
required to discriminate between highly similar stimuli in a perception
task, but generated thresholded patterns of activity in recognition mem-
ory. A threshold was observed in recognition memory because pattern
completion occurred for only some trials and completely failed to occur
for others; conversely, in perception, pattern completion always
occurred because of the high degree of item similarity. These results
offer a neurocomputational account of the distinct hippocampal signals
associated with perception and memory, and are broadly consistent
with proposals that CA1 functions as a comparator of expected versus
perceived events. We conclude that the hippocampal computations
required for high-level perceptual discrimination are congruous with
current neurocomputational models that account for recognition mem-
ory, and fit neatly into a broader description of the role of the hippo-
campus for the processing of complex relational information. VC 2014
Wiley Periodicals, Inc.
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INTRODUCTION

Neuropsychological studies have indicated that hippocampal damage
leads to profound long-term memory impairments (Scoville and Milner,
1957; Baddeley and Warrington, 1970; Graf and Schacter, 1984; Zola-
Morgan et al., 1986; Cohen and Eichenbaum, 1993; Vargha-Khadem
et al., 1997; Reed and Squire, 1998; Yonelinas et al., 2002). Neuroi-
maging and electrophysiological studies have corroborated the role of
the hippocampus in long-term memory by establishing a clear link
between hippocampal activity and memory encoding and retrieval (Ran-

ganath et al., 2004; Yonelinas et al., 2005; Montaldi
et al., 2006; Sederberg et al., 2006; Fell et al., 2011;
Axmacher et al., 2010).

Additionally, neuroimaging studies have indicated
that memory-related hippocampal activity is character-
ized by relatively distinct states (Ranganath et al., 2004;
Yonelinas et al., 2005; Montaldi et al., 2006; for a
review, see Eichenbaum et al., 2007). For example, in
recognition tests, previously studied items that are rec-
ognized on the basis of recollection are associated with
high levels of hippocampal activity, whereas items that
are not recollected are associated with very low levels of
activity, even if they are successfully recognized on the
basis of familiarity (Yonelinas et al., 2005; Montaldi
et al., 2006). Similarly thresholded patterns of hippo-
campal activity have been found in relational memory
tasks (e.g., source and associative memory; Eichenbaum
et al., 2007), which are largely dependent on recollec-
tion (Yonelinas, 2002; Yonelinas et al., 2010).

Cognitive memory models describe recollection as a
threshold retrieval process, in that qualitative informa-
tion about a study event is either retrieved or not (Yone-
linas, 2002). For example, in tests of relational
memory, thresholded memory retrieval has been evi-
denced by linear receiver operating characteristics
[ROCs1]. In addition, in a recent fMRI study, ROCs
constructed from hippocampal activity values during a
source memory task were found to be linear and there-
fore consistent with the threshold model (Slotnick and
Thakral, 2013). The thresholded response of the hippo-
campus, and of recollection, can be contrasted with the
perirhinal cortex, which responds in a more graded
manner and is associated with familiarity, or strength-
based, memory (Ranganath et al., 2004; Montaldi
et al., 2006; Staresina et al., 2013), which in turn pro-
duces curved ROCs (Parks and Yonelinas, 2007).

Challenges to the Traditional View
of Hippocampal Function

The neuropsychological and neuroimaging work on
the hippocampus has, until recently, focused on its roleDepartment of Psychology, University of California, Davis
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in long-term memory. However, empirical findings in the past
decade have challenged the traditional view that the hippocam-
pus is critical for long-term memory but not other cognitive
functions (Scoville and Milner, 1957; Baddeley and Warrington,
1970; Graf and Schacter, 1984; Zola-Morgan et al., 1986;
Cohen and Eichenbaum, 1993; Reed and Squire, 1998). For
example, it is now clear that hippocampal damage can impair
working memory and high-level scene perception2 (e.g., Bussey
and Saksida, 2005; Olson et al., 2006; Graham et al., 2010; Lee
et al., 2005, 2012; Warren et al., 2012; Aly et al., 2013; Yoneli-
nas, 2013). Moreover, neuroimaging studies have linked percep-
tual processing with hippocampal activity in healthy adults (e.g,
Barense et al., 2010; Lee and Rudebeck, 2010; Lee et al., 2008,
2010; Mundy et al., 2012; Aly et al., 2013).

As a result of such findings, it has been argued that the hip-
pocampus serves a broader role than previously thought, con-
tributing to perception and working memory as well as long-
term memory (Cohen and Eichenbaum, 1993; Graham et al.,
2010; Saksida and Bussey, 2010; Lee et al., 2012; Olsen et al.,
2012; Nadel and Peterson, 2013; Shohamy and Turk-Browne,
2013; Yonelinas, 2013). The mechanisms that would account
for the joint roles of the hippocampus across these cognitive
domains are still not well established, although it has been sug-
gested that the hippocampus is involved in relational (Cohen
and Eichenbaum, 1993; Olsen et al., 2012) or complex con-
junctive (Graham et al., 2010; Lee et al., 2012; Saksida and
Bussey, 2010) processing in the service of perception, working
memory, and long-term memory (also see Nadel and Peterson,
2013; Shohamy and Turk-Browne, 2013; Yonelinas, 2013).

Insights on Hippocampal Function from
Neurocomputational Models

Neurocomputational models have furthered our understand-
ing of how memories are encoded and retrieved in the hippo-
campus by exploring how distinct patterns of neural activity
and task performance arise from the network’s architecture
(e.g., McNaughton and Morris, 1987; Treves and Rolls, 1994;
McClelland et al., 1995; Rolls, 1996; Hasselmo and Wyble,
1997; Rudy and O’Reilly, 1999; Hasselmo et al., 2002; Nor-
man and O’Reilly, 2003; Hasselmo and Eichenbaum, 2005).
However, it is currently unclear whether these models can also
account for the recent findings linking the hippocampus to
perception. In addition, an important challenge for any hippo-
campal model that attempts to account for both the memory
and perception findings is that the nature of the respective sig-
nals can be quite different: whereas in memory the contribu-
tion of the hippocampus appears to be thresholded, or state-
based, there is evidence that in perception its contribution is
graded, or strength-based (Aly et al., 2013).

In this article, we first provide an overview of how computa-
tional models of the hippocampus account for thresholded

memory retrieval. Then, we outline the recent evidence impli-
cating the hippocampus in high-level perception and highlight
how the type of signal associated with perception differs from
memory, and the challenge this poses for existing models.
Finally, we report simulation results from a computational
model of the hippocampus to determine whether it can simul-
taneously account for memory and perception, and specifically
whether it can produce the thresholded memory signals and
graded perception signals that have been observed in the
empirical literature.

Thresholded Hippocampal Signals in Long-Term
Memory

Computational models of long-term memory generally agree
that the hippocampus is capable of forming distinct representa-
tions of events, even when the events are quite similar (McNaugh-
ton and Morris, 1987; O’Reilly and McClelland, 1994;
McClelland et al., 1995; Rolls, 1996). This capability, sometimes
referred to as pattern separation (or orthogonalization), is thought
to result from high levels of lateral inhibition, effectively limiting
the network to very sparse excitatory activity, especially within the
dentate gyrus (DG). This constraint creates a competitive learn-
ing environment, so that if two stimuli differ even subtly, the hip-
pocampal neurons that activate to encode those stimuli (via
Hebbian learning) are likely to differ dramatically.

A common assumption is that the hippocampus is funda-
mental to the storage and reinstatement of episodic memories.
Due to the singular nature of such events (e.g., remembering
where you parked your car today), synaptic weights must be
updated rapidly to capture unique associations (e.g., “Toyota,”
“Shields Avenue,” and “this morning”) as they occur (Tulving
and Markowitsch, 1998; Aggleton and Brown, 1999; Eichen-
baum and Cohen, 2001; Leutgeb et al., 2006, 2007). Pattern
separation is therefore important as it allows new events to be
quickly learned without damaging or conflating representations
of other, similar events (e.g., remembering where you parked
your car today versus yesterday).

At the time of retrieval, if the network is presented with part
of the original stimulus event, activation will sometimes spread
through the network and reinstate aspects of the original event
that are not currently present; this is referred to as pattern
completion. Some computational models and electrophysiologi-
cal studies suggest that this process is facilitated by recurrent
connections within CA3, which acts as an autoassociation net-
work (Marr, 1971; O’Reilly and McClelland, 1994; Rudy and
O’Reilly, 1999; but for evidence supporting an alternative
hypothesis, see Colgin et al., 2010). However, due to the afore-
mentioned effects of pattern separation, if a retrieval cue differs
too greatly from the original stimulus, the network will be
unable to reactivate the learned pattern. Thus, the hippocam-
pus is expected to behave in a thresholded manner, pattern
completing to produce a high level of activity, or else failing to
pattern complete and thus producing much lower activity.

The above computational account of the hippocampus is
consistent with theories that propose that the hippocampus is

2By “high-level perception”, we refer to perceptual discrimina-
tions or judgments about complex scenes, faces, or objects (i.e.,
at a level of stimulus complexity that is higher than that of sim-
ple features such as brightness, orientation, color, etc.).
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critical for recollection (Schacter et al., 1996; Aggleton and
Brown, 1999; Eldridge et al., 2000; Yonelinas, 2002; Eichen-
baum et al., 2007; Yonelinas et al., 2010). Recollection is pro-
posed to be thresholded in the sense that individuals retrieve
qualitative information about some events, but for other events
recollection fails entirely (Yonelinas, 1994, 2001; Yonelinas
et al., 2010). Thus, the thresholded output from computational
models of the hippocampus is consistent with the thresholded
nature of recollection, and converges with neuroimaging find-
ings that relate thresholded hippocampal signals to encoding
and retrieval of recollection-based memories (Ranganath et al.,
2004; Yonelinas et al., 2005; Montaldi et al., 2006; see Eichen-
baum et al., 2007 for review), as well as patient findings that
show that damage to the hippocampus selectively impairs recol-
lection (Yonelinas et al., 2002; see Yonelinas et al., 2010 for
review).

It is worthwhile emphasizing that the term “threshold” does
not imply that memory retrieval, or pattern completion, is “all-
or-none.” That is, successful retrieval may involve reinstating
any number of features from a past episode; consequently, hip-
pocampal activity levels related to memory retrieval may vary
across different recollected episodes. The term “threshold” is
used to indicate that only some studied items are recollected
(e.g., items exceeding a recollective threshold, or leading to pat-
tern completion), whereas others fail to be recollected and thus
remain indistinguishable from nonstudied items. This defini-
tion of “threshold” is consistent with both the hippocampal
model instantiated by Norman and O’Reilly (2003), which was
adopted for the current simulations, and behavioral models of
memory such as the dual-process signal detection model (e.g.,
Yonelinas, 2001). Such thresholded memory signals give rise to
ROCs that approximate a linear function when all but the
most stringent response criteria are used (Elfman et al., 2008).
Importantly, a thresholded signal does not necessitate that all
items that exceed the threshold be associated with the same
memory strength.

Strength-Based Hippocampal Signals in
Perception

As mentioned above, a growing body of literature indicates
that the hippocampus is involved in tasks assessing high-level
visual perception (e.g., Lee et al., 2005; Saksida and Bussey,
2005; Barense et al., 2010; Lee and Rudebeck, 2010; Mundy
et al., 2012; Warren et al., 2012; see Graham et al., 2010 and
Lee et al., 2012 for review). In addition, a recent behavioral
study with hippocampal lesion patients and a neuroimaging
study with healthy adults have suggested that the hippocampal
signal in perception tasks is strength-based, or continuously
graded (Aly et al., 2013), rather than reflecting a thresholded
signal as in recollection-based memory.

In the behavioral task in Aly et al. (2013), the stimuli were
pairs of scenes that were either identical or differed, in that the
scenes were slightly contracted or expanded relative to one
another. The specific manipulation was a “pinching” or
“spherizing,” which kept the sizes of the images the same but

contracted (pinched) or expanded (spherized) the scenes, with
the largest changes at the center and gradually decreasing
changes toward the periphery (also see Aly and Yonelinas,
2012). These changes altered the configural, or relational,
information within the scenes (i.e., the relative distance
between component parts) without adding or removing any
objects.

Patients with selective hippocampal or more extensive MTL
damage were briefly presented with these scene pairs, simulta-
neously, and rated their confidence that the two scenes were
the same or different. The patients were significantly impaired
relative to healthy controls on this task. Importantly, however,
this impairment was specific to one kind of perceptual judg-
ment. Patients were not impaired in their ability to make high-
confidence judgments associated with identifying specific details
that had changed (i.e., state-based perception; see Aly and
Yonelinas, 2012). Rather, they were selectively impaired in
graded, lower-confidence judgments associated with a sense of
match/mismatch (i.e., strength-based perception, Aly and Yone-
linas, 2012). Importantly, this pattern of results was observed
even when the analysis was restricted to patients with selective
hippocampal damage.

The role of the hippocampus in graded, strength-based per-
ception was corroborated in a follow-up neuroimaging study
with healthy adults. Aly et al. found that BOLD activity in the
hippocampus linearly tracked graded, lower-confidence
responses, but was not differentially sensitive to high-
confidence responses associated with a state of identifying spe-
cific, detailed differences.

Thus, in contrast to studies of long-term memory, where the
hippocampus supports high-confidence responses and shows
thresholded activity, in perception tasks, the current evidence
suggests that the hippocampus is critical for strength-based
responses at lower confidence levels, and shows graded levels of
activity. How can these conflicting findings be reconciled?

To our knowledge, no previous computational modeling
work has attempted to apply a hippocampal memory model to
perception. However, if the existing memory models accurately
capture the functions of the hippocampus, then they may also
produce the type of strength-based signals that have been
observed in perception. In this study, we examined the hippo-
campal component of Norman and O’Reilly’s (2003) comple-
mentary learning systems (CLS) model to test whether (1) this
model could be used to make accurate perception judgments,
and (2) the same model would produce a graded signal in per-
ception while simultaneously producing a thresholded signal in
memory.

METHOD

The Hippocampal Model

The network design is based on the hippocampal compo-
nent of the CLS model, as implemented by Norman and
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O’Reilly (2003). We used the software package Emergent (Aisa
et al., 2008) version 6 that incorporates the Leabra neural net-
work algorithm (O’Reilly and Munakata, 2000). The algorithm
includes a continuous rate-code output function, conditional
principal component analysis Hebbian learning, and a competi-
tive inhibition function that can be tuned to produce distrib-
uted representations with varying levels of sparseness.

The model comprises entorhinal cortex (EC) input and
output layers, the DG, CA3, and CA1 layers (see Fig. 1),
and has distinct encoding and retrieval modes of operation.
Stimuli are presented to the network via the EC input layer,
which has projections to DG and CA3 (the perforant path-
way), and to CA1. DG, which has very sparse activation, has
strong projections to CA3 (the Mossy fibers). During encod-
ing (i.e., in encoding mode), recurrent collaterals in CA3 help
bind together the different stimulus features. At the same
time, CA1 learns to associate direct input from the EC with
input from diffuse CA3 projections (the Schaffer collaterals).
During retrieval (i.e., in retrieval mode), the pathway from
EC input to CA1, and the mossy fiber pathway (DG-CA3),
are inactivated so that any pattern retrieved by CA3 becomes
the dominant output signal (Rolls, 1996; Hasselmo et al.,
2002).

A subtle departure from past simulation work with the CLS
model is that, in the current work, the pathway from EC input
to CA1 was diminished in strength during retrieval mode,
rather than inactivated completely. This allowed CA1 to act as
a “comparator” of the current stimulus from the EC input and
the retrieved pattern from CA3 (see Results and Discussion for
more). For consistency, this modification was used in both the
memory task and the perception task. Importantly, this modifi-
cation did not affect our ability to replicate previous results
with memory stimulations using the CLS model (see Results
for more details). Specific model parameters are included in
Appendix A.

Perception Task

For the perception task, a single trial comprised two stimu-
lus patterns (items) that were presented to the network
sequentially. A single item was composed of 36 feature dimen-
sions, each made up of four units (groups of neurons) with
one active unit per dimension. Consequently, any two ran-
domly generated stimulus patterns overlapped by an average of
25%.

The task consisted of 20 trials, with 10 matching and 10
mismatching pairs presented in random order. The pairs were
created from 20 randomly generated items. Matching pairs
were created by simply duplicating half of the items, and mis-
matching pairs were created by duplicating the remaining items
and then pseudo-randomly changing one or more (depending
on the condition) features of the duplicate, ensuring that the
same units were never reselected. Simplified illustrations (i.e.,
fewer features than were actually used) of matching and mis-
matching item pairs are presented in Figure 2A. The task was
run 50 times at each of 36 possible levels of feature mismatch.

The current approach to modeling perceptual differences
was to change a small number of features in the mismatch con-
dition. In this way, we were able to vary perceptual similarity
in a simple and tractable way, and no changes to the original
model’s architecture were required. An alternative approach
would have been to make smaller changes to a large number of
features, which might appear to be more analogous to the
“pinching” or “spherizing” manipulation used in previous
empirical studies (Aly and Yonelinas, 2012; Aly et al., 2013,
2014). However, because it is not clear how features in the
model are mapped to visual features in real-world stimuli, the
current feature change approach can be used as an approxima-
tion to the empirical manipulation.

Two simulation approaches were examined; an encode/retrieve
model and an always-encode model. For the encode/retrieve
model, an item was presented to the network in encoding
mode, and then, for the second (matching or mismatching)
item, the network was switched to retrieval mode. In taking
this approach, we used the network in a way that is compara-
ble to typical long-term memory simulations (Norman and
O’Reilly, 2003; Elfman et al., 2008). The always-encode model
differed in that both items were presented to the network in
encoding mode. We included the latter approach to ensure that

FIGURE 1. A schematic illustration of the hippocampal net-
work presented with a new stimulus event. An input pattern (i.e.,
the stimulus) is represented in the EC input layer as a matrix of
features (e.g., color, shape, etc.). Activity spreads to the CA sub-
fields, directly and indirectly via the sparsely active DG. Patterns
are learned via Hebbian weight changes between coactive units,
including recurrent collaterals within CA3, which help bind the
stimulus features together. During a cued recall task, the network
is presented with a subset of features from a studied item, and
CA3 is able to “complete” the pattern that corresponds to that
item. This in turn activates the associated CA1 pattern, which con-
verts the retrieved representation back to its original form at the
EC output layer. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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the results would replicate if one assumes that perception does
not involve any kind of (even very short-term) “retrieval.”

To measure performance, the overall level of activity was
recorded from CA1 and CA3 when the second item in each
pair was presented. We also measured activity at the EC output
layer, but since this layer receives input from CA1 alone and is
in this sense redundant with CA1, we did not analyze the EC
data. An additional reason for this approach was that CA1, as
it is instantiated in the model, supports comparatively more
fine-grained activity levels than EC.

Memory Tasks

Recognition memory was simulated in two ways: using com-
plete retrieval cues and partial retrieval cues. For both simula-
tions, 20 randomly generated items—the same items used in
the perception task—comprised the study list. The items were
sequentially presented to the network in encoding mode. The
network was then switched to retrieval mode for the test phase.
The test list comprised the 20 study items and 20 randomly
generated lures (see Fig. 2B) presented in random order. For
the complete retrieval cue simulations, the entire studied item
(or lure) was presented at test. In this respect, the memory task
was kept as similar as possible to the perception task (in which
complete stimulus patterns, i.e., all feature dimensions, were
always presented). For the partial retrieval cue simulations, half
the feature dimensions in each test item were left blank. The

partial retrieval cue simulation approach is typical of the mem-
ory simulations used to probe hippocampal pattern completion
(e.g., Norman and O’Reilly, 2003). In addition, it may more
accurately reflect episodic item recognition tests, in which par-
ticipants are required to indicate if the test item was presented
in an earlier study context (i.e., the earlier study list, which is
represented by the missing features). In either case, as indicated
below, the two simulations led to similar conclusions.

RESULTS

Figure 3A shows the average activity of CA1 units for
matching item pairs and mismatching pairs in the perception
task. The activity distributions were overlapping and Gaussian
in shape, and activity strength was on average predictive of
match or mismatch condition. Additional simulations showed
that, as the number of mismatching features was systematically
varied in equal intervals from 0 (complete match) to 36 (com-
plete mismatch), CA1 activity distributions gradually shifted
from high to low activity (Fig. B1, Appendix B). That is, on
average, the match trials produced higher activity levels than
mismatch trials. The initial simulations were conducted using
separate encoding and retrieval modes, but the same pattern of
results was found using the always-encode model (see below
for additional analyses). Together, the results show that the

FIGURE 2. Simplified representations of the perception and
recognition memory stimuli. Each pattern represents a stimulus
and each row is a feature dimension; a black square represents a
maximally active unit (or group of neurons). A: Perception
(match/mismatch) task: Examples of matching (top) and mis-
matching (bottom) item pairs. The mismatching pair has one fea-
ture difference (top feature). The degree of mismatch was
manipulated by changing the number of feature differences. B:

Recognition memory task (complete retrieval cue): One study item
(top) and two test items (bottom). Half the test items were learned
patterns (targets) and half were new (lures). There was also a par-
tial retrieval cue memory test (not shown here), which differed in
that 50% of features were missing at test. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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hippocampus produces continuous strength distributions when
used to make perceptual discriminations.

In contrast, the recognition memory simulations produced
distributions that were consistent with a threshold process.
Studied versus nonstudied item recognition distributions for
the complete retrieval cue simulations are presented in Figure
3B, and the distributions for the partial retrieval cue simula-
tions are shown in Figure C1 (Appendix C). In both cases, the
studied items had a bimodal distribution, producing either
strong activity (indicating pattern completion) or weak activity
(indicating retrieval failure). In contrast, nonstudied items pro-
duced only weak activity (retrieval failure).

To verify that pattern completion corresponded to accurate
item retrieval, we compared each EC output pattern with its
respective target pattern using a match-mismatch rule (see Nor-
man and O’Reilly, 2003; correct retrieval was assigned to scores
greater than 0.67). Using a binary logistic regression, we found
that CA1 activity predicted accurate item recognition (i.e., tar-
get versus lure) for all trials of the complete retrieval cue test;
for the partial retrieval cue test, 99.8% of target trials and
100% of lures were accurately predicted.

ROC curves were then plotted to compare the performance
characteristics of the perception and memory tasks, using activ-
ity from CA1 (Fig. 3C). The perception ROC plots the pro-
portion of correctly identified matching items (“hit rate”)
against incorrectly identified mismatching items (“false alarm
rate”; using four mismatching features) as the criterion for
attributing activity to a “matching” pair was relaxed from the
maximum observed activity to zero. Similarly, the recognition
ROCs plot correctly identified target items (“hit rate”) against

incorrectly identified lure items (“false alarm rate”) as a func-
tion of the criteria based on activity.

The perception ROC function was curved and had a y-inter-
cept of 0; this shape is consistent with a continuous, signal
detection process (Swets, 1988). By comparison, the memory
ROC functions were relatively linear and had a non-zero y-
intercept, consistent with a threshold process (Swets, 1988;
Slotnick and Thakral, 2013). This latter pattern held for both
the partial cue and full cue memory simulations.

To examine the roles of different hippocampal subfields in
the perception task, we examined measures of perceptual sensi-
tivity in CA1 and CA3. Sensitivity (d 0) of the model to match-
ing versus mismatching pairs was calculated as the difference in
the mean activity for match (lact match) and mismatch
(lact mismatch) trials divided by the average standard deviations
(r), as follows:

d 05
lact match2lact mismatchffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðract match

22ract mismatch
2Þ=2

p (1)

Using this metric, we compared CA1 and CA3 as the num-
ber of mismatching features was increased from 1 to 36 (Fig.
4). The DG layer was not included in this analysis because it
was inactive during retrieval mode, and the EC output was
excluded because it is redundant as a strength signal in the
model (i.e., its activity is determined only by CA1).

For the encode/retrieve model (Fig. 4A), CA1 sensitivity
increased gradually as the number of feature differences was
increased, and eventually tapered off. CA3 showed a similar
trend, but was much less sensitive overall. Using the always-

FIGURE 3. Comparison of hippocampal network performance
during the perception and recognition memory tasks. A: Distribu-
tions of average activity levels for CA1 in the perception task
(shown for matching items and items with 4 and 8 mismatching
features out of a possible 36). B: Distributions of CA1 activity for
studied (target) versus nonstudied (lure) items in the complete
retrieval cue recognition memory task. In perception (A), the
match and mismatch items produced overlapping strength distri-
butions. The match items produced slightly higher activity, on
average, than mismatch items, but critically, both types of items
led to pattern completion. In contrast, in recognition memory (B),
some studied items led to pattern completion (the hump on the

right) whereas others failed to lead to pattern completion (the
smaller hump on the left). Nonstudied items never led to pattern
completion. Thus, the result was a thresholded distribution. C.
ROCs, plotted using the average CA1 activity in the perception
task and the memory tasks. The ROC in the perception task is
curvilinear, whereas the memory ROCs are relatively linear. Note
that in the memory tasks, overall performance is lower when a
partial retrieval cue is used (vs. a complete cue), but in both cases,
the resulting ROCs are relatively linear. [Color figure can be
viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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encode model, CA1 demonstrated a similarly graded increase
in sensitivity (Fig. 4B), while CA3 again showed weak sensitiv-
ity compared to CA1, and did not improve as the number of
feature differences was increased.

The results of the simulations suggest that, whether one
adopts the encode/retrieve or the always-encode model, CA1 is
particularly sensitive to perceptual changes, and its sensitivity
gradually increases as stimulus pairs become more different.

We then explored the network dynamics that produced con-
tinuous strength-based perception by examining how items
were represented relative to one another as the number of mis-
matching features increased. To compare perception to previous
findings in the memory literature, we examined the encode/
retrieve model and plotted the average pattern distance—meas-
ured as the mean square error (MSE)—between mismatching
representations for CA1 and CA3 (Fig. 5).

The distance plots reveal two interesting transitions that
speak to both the continuous perception signal and the thresh-
olded memory signal. First, CA1 shows a steady rise in pattern
distance at the low end of mismatch (proportions of 0 to 0.4
features changed). This indicates that the two items initially
overlapped completely in CA1, but gradually diverged as the
number of feature differences increased. Thus, pattern similar-
ity in CA1 tracks the objective similarity of the two items.
Importantly, the shift in overlap corresponded with increasing
strength-based sensitivity over the same period (see Fig. 4A,
proportions of 0 to 0.4 features changed). In contrast, CA3
pattern distances remained minimal over the same period, indi-
cating that CA3 was more likely to simply reactivate the pat-
tern associated with the first item. Thus, pattern similarity in
CA3 does not track objective similarity very well, and is less
sensitive than CA1 to very small changes between stimuli (see
Fig. 4A, proportions of 0 to 0.4 features changed).

Figure 5 also indicates that CA3 had two distinct retrieval
states, delimited by a steep transition near the center of the
similarity scale. On the left side of the transition, distances are
small, indicating pattern completion. That is, the second item

FIGURE 4. Sensitivity (d’) of CA1 and CA3 to matching ver-
sus mismatching item pairs as the number of mismatching features
was varied from 1 to 36 (i.e., all 36 features mismatch). Sensitivity
is based on overall levels of activity. A: Sensitivity using an
encode/retrieve model. The network alternated between an encod-
ing mode for the first item and a retrieval mode for the second

item. Activity was measured from the response to the second item.
B: Sensitivity using an always-encode model. Activity was again
measured from the response to the second item. In both models,
CA1 was more sensitive to perceptual mismatch than CA3. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

FIGURE 5. The average pattern distance (mean square error)
between items in mismatching pairs in the perception task, repre-
sented in CA1 and CA3 as a function of the number of feature
differences. The steep rise near the center of the figure indicates
an increasing proportion of items that failed to exceed the thresh-
old for pattern completion, leading to the formation of a new pat-
tern. This threshold is particularly pronounced for CA3, in the
sense that the function remains flat and does not respond to stim-
ulus changes until the threshold is reached (about 0.40 in the cur-
rent simulations). In contrast, CA1 responds more continuously
and is able to differentiate between small stimulus changes. Thus,
CA3 is relatively more thresholded compared with CA1, which
shows a more graded pattern and is able to represent subtler stim-
ulus changes. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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was drawn into the attractor created by the first item. In con-
trast, on the right side, much larger pattern distances indicate
that CA3 was no longer reactivating the first item pattern (c.f.
Yassa and Stark, 2011).

Because CA1 receives projections directly from CA3, it
showed a similar transition as CA3 shifted from one state to
the other. Critically, however, CA1 showed gradually increasing
pattern distance with small stimulus differences, and it did so
before CA3 started to discriminate similar items (i.e.,< 0.4
proportion of features changed). This indicates that CA1 can
produce a continuously graded signal that is diagnostic at low
levels of mismatch, while CA3 is considerably less effective at
discriminating between similar stimuli until a threshold is
reached.

Why does CA1 show a more graded response than CA3,
particularly given that CA3 is one of the major inputs to CA1?
There are several reasons for this. First, because CA3 is subject
to greater lateral inhibition than CA1, CA3 produces propor-
tionately sparser activation. Greater inhibition reduces the
probability of pattern overlap except at very high levels of
input similarity, the result being a rapid transition between
high and low overlapping states. In addition, recurrent excita-
tory projections within CA3 act to bind the elements of a
stimulus representation together as a cohesive unit, together
forming an attractor. When an input is sufficiently close to the
attractor, activation spreads along the strengthened recurrent
connections to reproduce the original pattern. In contrast, the
lack of recurrent connectivity within CA1, combined with
more diffuse activation patterns, supports more graded levels of
pattern overlap and activation strength.

An interesting finding of the current simulations is that there
was greater activity for matching than mismatching trials in the
perception task. Why might such a pattern arise? When pre-
sented with the second item in a mismatch trial, CA3 pattern
completes to the previous stimulus, and this signal is projected
to CA1. Concurrently, CA1 receives information about the
current, slightly mismatching stimulus from the EC input
layer. Excitation of CA1 is therefore spread out over more units
compared with a trial consisting of matching pairs. Although
this might lead to the prediction of greater overall activity in
CA1 for mismatching trials, competitive inhibition within CA1
counteracts such a result by dampening the activity of units
that are less strongly excited (i.e., that are stimulated by EC
alone or CA3 alone). In contrast, on matching trials, the same
CA1 units are jointly and strongly reactivated by both EC and
CA3, and inhibitory dynamics do not dampen the overall level
of activity. (A simplified model that demonstrates the effect is
included with the hippocampal model project file referenced in
Appendix A.)

DISCUSSION

The involvement of the hippocampus in memory is well
established, and neurocomputational models of the hippocam-

pus have been shown to explain a wide range of extant mem-
ory data (e.g., Norman and O’Reilly, 2003; Elfman et al.,
2008). Recent evidence suggests the hippocampus also plays an
important role in high-level scene perception (e.g., Graham
et al., 2010; Lee et al., 2005, 2012; Olsen, et al., 2012; Warren
et al., 2012; Aly et al., 2013). Whether existing computational
models are able to account for these perception findings has
not been established. To address this issue, we conducted simu-
lations using a hippocampal model that was adapted from the
CLS framework (Norman and O’Reilly, 2003) and found that
the same network was able to reproduce findings from both
memory and perception paradigms.

Consistent with the patient and neuroimaging work impli-
cating the hippocampus in strength-based perception (Aly
et al., 2013), the model produced graded, overlapping levels of
activity that discriminated between matching and mismatching
pairs in the perception task. The same model showed a thresh-
olded activity function for recognition memory, in agreement
with prior work indicating that the hippocampus is involved in
recollection in long-term memory (Yonelinas et al., 2002,
2005; Ranganath et al., 2004; Montaldi et al., 2006; see
Eichenbaum et al., 2007 and Yonelinas et al., 2010 for review).
In addition, the continuous perception signal was most
strongly related to mismatch magnitude in the CA1 subfield.

The finding that CA1 was the primary locus of the percep-
tual signal is consistent with a number of models in which
CA1 acts as a “comparator” of perceived versus remembered
events (Eichenbaum and Buckingham 1990; Hasselmo and
Wyble, 1997; Meeter et al., 2004; Lisman and Grace, 2005;
Kumaran and Maguire, 2007; Yassa and Stark, 2011; Duncan
et al., 2012). The current results extend this work by indicat-
ing that CA1 can also serve as a comparator in perceptual
tasks. In the case of perception, the comparison is between a
stimulus that is currently in the environment (or in the focus
of attention), and one that was recently perceived (or recently
attended).

Importantly, the current simulations with separate encoding/
retrieval modes showed that the hippocampus can produce
both continuous signals and thresholded signals without chang-
ing any properties of its architecture or basic mode of opera-
tion. The continuous output, however, was not dependent on
having separate encoding and retrieval modes: a continuous
perceptual signal was also observed in simulations in which the
network was kept in an encoding mode. Thus, we need not
assume that the hippocampus rapidly alternates between encod-
ing and retrieval modes (e.g., Hasselmo et al., 2002) in order
to support perceptual discriminations and output a graded
signal.

Why are There Thresholded Signals in Memory
and Graded Signals in Perception?

A critical point of success for the model is that we did not
need to modify the way the network functioned—such as
adjusting connectivity parameters—between the perception and
recognition memory tasks in order for the network to perform
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both tasks successfully, or for it to produce the respective
strength-based (continuous) and state-based (thresholded) sig-
nals. Rather, each signal emerged naturally as a result of the
differing task demands; that is, the demand to differentiate
between items with a high proportion of feature differences, as
in the memory task, and the demand to differentiate between
items with relatively few feature differences, as in the percep-
tion task.

The threshold nature of memory retrieval is not entirely
attributable to any single subfield or parameter of the hippo-
campal model. However, one aspect of the model that is criti-
cal is the high level of inhibition within the hippocampal
layers, particularly the DG, which leads to sparse activity and
minimal representational overlap between encoded events.
Consequently, only test cues that are very similar to a specific
studied item will support successful retrieval. In addition,
recurrent connectivity in CA3 produces nonlinear neural attrac-
tors that support a high level of pattern completion when a
test cue is sufficiently similar to a stored pattern, but cues that
do not match any specific studied item very well will effectively
fail to lead to pattern completion. It is this “retrieval failure”
that produces the thresholded hippocampal output.

In contrast, in our tests of perception, because the cue stim-
ulus (i.e., the second item) is highly similar—or identical in
the case of matching item trials—to the initial stimulus in the
pair, the cue stimulus invariably leads to pattern completion of
the initial item and produces an output that is highly corre-
lated with the cue stimulus. There is variability in how closely
the completed pattern matches the cue and this allows for the
continuous signal that is useful in discriminating between
match and mismatch trials. Importantly, because the two items
in a perception trial are so similar to one another, the hippo-
campus is effectively always operating at a level well above its
pattern completion threshold; thus, the perceptual signal
reflects the continuous variability beyond the threshold.

The Role of the Hippocampus in Perception

A growing body of work suggests that the hippocampus is
critical for perceptual decisions that require representations of
detailed relational or spatial information (e.g., Graham et al.,
2010; Lee et al., 2005, 2012; Olsen, et al., 2012; Warren
et al., 2012; Aly et al., 2013; see Lee et al., 2012 and Yoneli-
nas, 2013 for review). In the scene perception task used by Aly
et al., (2013), the perceptual change was a subtle distortion
designed to globally change the relational or configural infor-
mation within the scene. The discriminations therefore
required a detailed representation of how components of the
scene were bound together within the overall spatial layout. We
suggest that it is the need for this kind of representation that
makes this task hippocampally dependent.

In contrast, if the task involved a manipulation of items
rather than relational information (e.g., a tree that is present in
one scene but absent in another), performance could depend
on item-level representations and then presumably would be
less dependent on the hippocampus (Baxter, 2009; Lee et al.,

2012). Rather, regions in ventral temporal cortex, or perhaps
perirhinal cortex, could be capable of supporting this discrimi-
nation (Lee et al., 2005; Saksida and Bussey, 2005; Graham
et al., 2010). Thus, it is not our view that the hippocampus is
needed for all perceptual discriminations; only that it is crit-
ically important for perceptual decisions based on assessments
of precise, or high-resolution, relational information (Yonelinas,
2013). This is in keeping with a large number of studies that
have found intact perceptual discrimination of colors, faces,
and simple objects in patients with hippocampal damage (see
Graham et al., 2010 and Lee et al., 2012 for review).

The Role of Other Brain Regions in Strength-
Based Perception

Is the hippocampus the only brain region that is able to per-
form computations that support strength-based perception, or

can other regions also support these judgments? Aly et al.

(2013) reported that selective damage to the hippocampus is

associated with significant impairments in strength-based per-

ception, indicating that the hippocampus itself makes an

important contribution. However, strength-based perception

was not completely eliminated in hippocampal patients, sug-

gesting that other brain regions might also be capable of sup-

porting this kind of perceptual decision. Moreover, an fMRI
study provided evidence that regions outside of the hippocam-
pus are related to strength-based perception, including the par-
ahippocampal cortex, lateral occipital complex, and fusiform
gyrus (Aly et al., 2013, 2014).

The current simulations showed how the hippocampus can
support strength-based perception via Hebbian weight changes,
and additional simulations indicated that an adaptation-based
mechanism can produce comparable results in the absence of
weight-based learning (Appendix D, Fig. D1). Can a model of
cortex also support perceptual discriminations via Hebbian
weight changes and/or adaptation-based mechanisms? To inves-
tigate these questions, we conducted additional simulations
with a simple, two-layer model of cortex, based on the CLS
model (Norman and O’Reilly, 2003). We found that, using
either Hebbian weight-based learning or neural adaptation, the
cortex could reliably discriminate between match and mismatch
trials (see Fig. E1, Appendix E). These results are consistent
with the above-mentioned hypothesis that, although the hippo-
campus makes an important contribution to strength-based
perception, it may not be the only region that can support
these judgments.

The findings with the cortical model raise an important
question, namely, does the hippocampus play a role in
strength-based perception that is distinct from other regions?
We have suggested previously that the hippocampus is critical
in supporting complex, high-resolution bindings (Yonelinas,
2013). That is, the hippocampus is critical in linking together
the complex, qualitative aspects that make up events, and in a
way that maintains high-resolution, detailed information (e.g.,
the specific color of the shirt you wore in a specific location at
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a specific time). Detecting the global changes used in the Aly
et al. (2013) study would presumably benefit from such high-
resolution, relational representations—representations that con-
tain detailed information about the components of the scenes
as well as their precise relations to one another.

The hippocampus may contribute to strength-based percep-
tion by virtue of its representation of high-resolution, relational
information; but other regions may contribute to strength-
based perception in other ways. Although the manipulation
used in Aly et al., (2013) is “global” in the sense of extending
over the entire image, relatively local components are also
affected. For example, “pinching” an image may alter the per-
ception of individual objects within the image. Alternatively,
global changes over the image may have effects on the per-
ceived depth of the scene. The detection of these kinds of
changes (i.e., to individual objects, or to image depth) need
not require the hippocampus. Rather, visual or spatial represen-
tations in medial temporal, occipito-temporal, or parietal corti-
cal regions may be sufficient. Thus, hippocampal damage
reduces performance, but does not entirely eliminate accurate
strength-based perception (Aly et al., 2013). If these hypotheses
are correct, it should be possible to take the current scene per-
ception task and reduce the extent to which the hippocampus
will be critical by decreasing the complexity of relational bind-
ings or by varying the extent to which the required discrimina-
tion relies on high-resolution (detailed) versus low-resolution
(less precise) representations (see Yonelinas, 2013). Such studies
are ongoing.

Limitations and Future Directions

A matter for future consideration concerns the direction of
the relationship between hippocampal activity and match/mis-
match detection. In the study by Aly et al. (2013), the level of
hippocampal activity—inferred from the blood-oxygen-level
dependent (BOLD) signal—was positively correlated with mis-
match confidence. That is, the more that individuals were con-
fident that a pair of items was different, the greater the
hippocampal activity. By contrast, the current model showed
greater overall activity for matching items than for mismatch-
ing items. The relationship between the BOLD signal, neural
firing rates, and local field potentials is not yet fully understood
(Ekstrom et al., 2009; Ekstrom, 2010; Logothetis, 2003), so
the reason BOLD activity increased whereas activity in the
model decreased cannot be confidently addressed. One possibil-
ity is that increases in the BOLD signal do not reflect increases
in activation strength per se, but rather the time it takes the
network to settle into a stable pattern. In fact, we found that
the model took longer to settle for mismatching pairs, which is
at least consistent with this explanation.

Another possible reason for the difference in signals is the
inherent limitations in the algorithm used in the current simu-
lations. Specifically, competitive inhibition was simulated as a
fairly firm limit on the number of neurons that can be acti-
vated above a certain level (O’Reilly and Munakata, 2000). In

our simulations, mismatching stimulus cues caused excitation
to be spread out over more CA1 units relative to matching
cues. With a more flexible inhibition rule it is possible that
this would have led to an increase, rather than decrease, in
overall CA1 activation.

Finally, another factor that may affect whether perceptual
matches lead to an increase or decrease in neural activity is
adaptation. Adaptation (or repetition suppression) is frequently
reported in fMRI studies that involve repeating stimuli, and
this adaptation has been observed in the MTL (Goh, et al.,
2004; Howard et al., 2011; Diana et al., 2012; see Krekelberg
et al., 2006). In these studies, presenting the same stimulus
twice in a row is found to produce a diminished neural
response (note, however, that repetition enhancement is also
sometimes observed; see Turk-Browne et al., 2007).

In post-hoc simulations, we found that incorporating neural
adaptation into the hippocampal model reversed the sign of
match/mismatch difference, such that mismatching items were
associated with greater activity than matching items (Fig. D1,
Appendix D). That is, as the level of mismatch increased, activ-
ity also increased in CA1 (but not CA3, consistent with our
simulations without adaptation). We also found that the net-
work produced similar results with or without Hebbian learn-
ing, that is, using adaptation alone (data not shown). This
suggests that activation-based mechanisms (adaptation), in con-
trast to weight-based mechanisms (Hebbian learning), might be
an important component of how the hippocampus performs
tasks in which information need not persist over long intervals.
Nevertheless, the inclusion of adaptation did not improve the
ability of the model to account for graded perceptual signals;
CA3 alone was vastly less effective at performing adaptation-
based mismatch detection compared with CA1, and CA1 was
effective with or without the inclusion of adaptation. Impor-
tantly, CA3 did not produce graded signals in the simulations
with adaptation. Nonetheless, future research examining the
effects of neural adaptation on the model will be useful.

The current simulations lead to some potentially interesting
predictions of how different hippocampal subfields might
respond to changes in perceptual similarity that could be
assessed using high-resolution fMRI. For example, by incre-
mentally manipulating the number of mismatching features
between pairs of items in a perceptual matching task, different
subregions of the hippocampus should respond in compara-
tively unique ways. That is, based on the simulations, one
would expect CA3 to show a consistent response at low levels
of mismatch, indicative of pattern completion, and a fairly
steep transition beyond some critical level of mismatch. Con-
versely, the CA1 subfield should exhibit a more gradual and
continuous change in signal. Results that are broadly consistent
with this were reported in a recent high-resolution fMRI mem-
ory study (Lacy et al., 2011), in which participants viewed a
series of images that were either first presentations of an image,
low-similarity lures, high-similarity lures, or repetitions of pre-
vious items. In CA1, activity was found to vary in a graded
fashion with the level of change, whereas in CA3/DG, activity
transitioned more steeply for small changes.
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CONCLUSIONS

Several lines of evidence suggest the hippocampus contrib-
utes to a range of cognitive functions, but how it performs
seemingly disparate tasks under a single neural architecture is a
question of great interest. The modeling work presented here
provides an important step towards a unified understanding of
hippocampal functioning across the domains of memory and
visual perception, by showing how the hippocampal network is
able to produce contrasting signals—that is, strength-based per-
ception and state-based memory—using a common set of core
assumptions. Future research will undoubtedly add to this
emerging picture.

APPENDIX A

Basic Network Parameters

The following notes are a selective description of the rules
and parameters used in the model simulations. Table A1 shows
each layer size (i.e., number of units) and percentage of activ-
ity determined by the k-winners-take-all (Norman and
O’Reilly, 2003). Table A2 shows the properties of the main

projections, including the mean initial weight strengths
(Mean), variances of the weight distribution (Var), relative
strengths of the projections during encoding (Scale enc) and
retrieval (Scale retr), and the proportions of receiving units
that each sending unit is connected to (% Con). The learning
rate was 0.1. The project file is available for download at
http://goo.gl/4XkKya.

APPENDIX B

CA1 Activity Distributions Ranging 0–100%
Feature Mismatch

We repeated the perception simulations with a broader range
of match/mismatch levels, systematically varying the number of
mismatching features from 0 (complete match) to 36 (com-
plete mismatch). Activity distributions for CA1 across the vary-
ing levels of mismatch are presented in Figure B1. These
simulations show that, as the number of mismatching features
is systematically increased, CA1 activity distributions gradually
shift from high to low activity. Moreover, with very high levels
of mismatch, the “match” and “mismatch” distributions are
essentially nonoverlapping, suggesting consistent pattern com-
pletion for “match” items and a failure of pattern completion
for “mismatch” items. The latter finding is analogous to recog-
nition memory simulations, in which pattern completion never
occurs for nonstudied (lure) items (compare 24, 30, and 36
feature mismatch items in Fig. B1 to the nonstudied item dis-
tribution in Fig. 3).

TABLE A1.

Layer Sizes and Activity Levels

Layer/area Units Activity (%)

Entorhinal Cortex (in/out) 144 25.0

DG 1600 1.0

Area CA3 480 3.8

Area CA1 384 9.4

Note. In/out 5 input and output layers, respectively.

TABLE A2.

Properties of Network Projections

Projection Mean Var Scale (Enc) Scale (Retr) % Con

EC to DG, CA3 0.5 0.1 1 1 25

CA3 recurrent 0.5 0.1 2 2 100

CA3 to CA1 0.5 0.1 0.3 0.3 90

DG to CA3 0.9 0.01 15 0 4

EC to CA1 0.5 0.25 1 0.15 8.3

CA1 to EC 0.5 0.25 0.25 0.25 8.3

Note: Mean: mean initial weight strength; Var: variance of initial weight distri-
bution; Scale: scaling of this projection relative to other projections; Enc:
encoding mode, Retr: retrieval mode; % Con: percentage connectivity; EC:
entorhinal cortex; DG: dentate gyrus.

FIGURE B1. Perception strength distributions of CA1 activity
as the number of feature differences is varied from 0 to 36 (of
36), at intervals of 6. CA1 produces continuous strength distribu-
tions that gradually move farther apart as the number of feature
differences is increased. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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APPENDIX C

Partial Retrieval Cue Memory Simulation

APPENDIX D

Match/Mismatch Sensitivity With Adaptation

The simulations reported in this paper generally showed
greater activity for matching versus mismatching items pairs

in the perception task. However, Aly, et al. (2013) found
evidence for the opposite effect (i.e., greater hippocampal
activity for mismatching versus matching item pairs). Addi-
tional simulations were conducted to test the hypothesis that
neural adaptation can account for this discrepancy. Figure
D1A shows distributions of average activity in CA1. As
expected, mismatching pairs are now associated with an
increase in the overall level of activity. Figure D1B compares
match/mismatch sensitivity for CA1 and CA3 as mismatch
was varied from 0 to 100%. CA3 was comparatively very
poor at discriminating between matching and mismatching
pairs.

Adaptation was included using the “accommodation”
parameters of cell activation from the leabra algorithm. There
was a firing-rate threshold of onset of .1 and an update rate
of 0.7. Computations were made at the end of each trial.

APPENDIX E

Match/Mismatch Strength in the Cortical Model

Additional simulations were run to test whether a simple
two-layer model of the cortex (comprising an input layer and
a neocortical, or hidden, layer of 800 units) could perform
the perception task. Simulations were run using Hebbian-
based learning (Fig. E1A) with a learning rate of 0.004, and
separately using the adaptation parameters listed in Appendix
D (Fig. E1B). Using four feature differences for the mis-
matching pairs, both approaches were successful in discrimi-
nating between matching and mismatch item pairs, and
produced overlapping, Gaussian-like distributions that were
comparable to those observed in area CA1 of the hippocam-
pal model.

FIGURE D1. Hippocampal network performance for the match/mismatch perception task with
the inclusion of neural adaptation (using the encode/retrieve model). A: Distributions of average
activity levels for CA1 for matching items and mismatching items with 4 and 8 features changed. B:
Sensitivity (d’) of CA1 and CA3 as the number of mismatching features was varied from 1 to 36.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

FIGURE C1. Recognition memory distributions of CA1 activ-
ity for studied versus nonstudied items using partial retrieval cues
(50% of features were blank at test). CA1 produces a bimodal dis-
tribution for studied items, indicating a pattern completion
threshold in the hippocampus. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]
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