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Transitive inference (TI) is a classic learning paradigm for which the relative contributions of experi-
enced rewards and representation-based inference have been debated vigorously, particularly regarding
the notion that animals are capable of logic and reasoning. Rhesus macaque subjects and human
participants performed a TI task in which, prior to learning a 7-item list (ABCDEFG), a block of trials
presented exclusively the pair FG. Contrary to the expectation of associative models, the high prior rate
of reward for F did not disrupt subsequent learning of the entire list. Monkeys (who each completed many
sessions with novel stimuli) learned to anticipate that novel stimuli should be preferred over F. We
interpret this as evidence of a task representation of TI that generalizes beyond learning about specific
stimuli. Humans (who were task-naïve) showed a transitory bias to F when it was paired with novel
stimuli, but very rapidly unlearned that bias. Performance with respect to the remaining stimuli was
consistent with past reports of TI in both species. These results are difficult to reconcile with any account
that assigns the strength of association between individual stimuli and rewards. Instead, they support
sophisticated cognitive processes in both species, albeit with some species differences.
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Transitive inference (TI) is a fundamental process in proposi-
tional logic and has been studied by psychologists for over a
century (Burt, 1911). If A � B, and B � C, and all three items
belong to an ordered list, then the transitive property of the “�”
operator permits the conclusion that A � C. Thus, TI provides a
formal definition for what it means to “know” that a set of items
are ordered. Nevertheless, accounts of TI performance based on
stimulus-reward associations have proven remarkably persistent
because associative and cognitive accounts of TI learning often
make qualitatively similar predictions. Here, we tested a paradigm
in which stimulus-reward associations are predicted to substan-
tially impair TI learning.

The first animal study of TI was reported by McGonigle and
Chalmers (1977). They presented squirrel monkeys (Saimiri sciu-
reus) with adjacent pairs of stimuli from a five-item list (i.e., for a

list of stimuli ABCDE, subjects were initially trained on AB, BC,
CD, and DE). The “correct” choice was whichever item came
earlier in the list. Once subjects reliably selected correct items,
they were tested on all 10 possible pairs. Despite having never seen
the nonadjacent pairings previously, subjects not only selected the
correct items with high accuracy, but did so at rates comparable to
those of 4-year-old human children.

Since this initial study, accurate performance on TI tasks has
been reported in a growing range of species, and the capacity for
TI in animals appears to be ubiquitous among vertebrates (Vas-
concelos, 2008). Some form of TI has been reported in at least 20
species (Jensen, 2017), suggesting that TI taps into cognitive
faculties that are well preserved across an evolutionarily wide
range of species.

Two major behavioral features have been regularly reported in
the TI literature. One is the terminal item effect (Wynne, 1997).
The first item in a TI list is always rewarded, while the last is never
rewarded, so these items are less ambiguous than the nonterminal
items. This appears to yield a boost to their accuracy. The other is
the symbolic distance effect (D’Amato & Colombo, 1990). Adja-
cent pairs typically evoke the lowest response accuracy, whereas
items two positions apart (e.g., BD) have higher accuracy, and so
on, such that the pair comprising the two terminal items has the
highest accuracy. In both cases, higher accuracy tends to be
correlated with lower reaction times (RTs), so terminal item effects
and symbolic distance effects are sometimes also reported with
respect to reaction time (RT; McGonigle & Chalmers, 1992).

Despite this rich literature of empirical results, the field remains
divided on how TI itself is performed. The cognitive approach to
explaining TI in animals rests on the premise that subjects form a
representation of the list (Jensen, Muñoz, Alkan, Ferrera, & Ter-
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race, 2015; Zentall, 2001). Several lines of evidence are consistent
with the cognitive approach. For example, subjects can transfer
prior serial learning between TI and a serial task with qualitatively
different task demands (Jensen, Altschul, Danly, & Terrace, 2013).
In addition, the serial position of each stimulus can be dissociated
from its reward magnitude without disrupting subsequent TI
(Gazes, Chee, & Hampton, 2012).

Many studies of TI in animals reject the cognitive interpretation
in favor of models of associative learning (Allen, 2006; Couvillon
& Bitterman, 1992). Under the logic of this approach, subjects can
infer the order of stimuli by determining how strongly each stim-
ulus is associated with the amount and/or probability of reward.
Retrospective calculation of stimulus-reward association cannot
explain successful inferences based on traditional adjacent-pair
training, because the frequency of reward is equal across all
nonterminal stimuli. Nevertheless, more elaborate associative
models have been proposed, such as value transfer theory (von
Fersen, Wynne, Delius, & Staddon, 1991), which posits that as-
sociative strength can “leak” between stimuli (such that stimulus
A, being a “proven winner,” imparts some of its value to B). This,
in principle, could permit TI-like effects in some scenarios without
necessitating a full-blown representation of the ordered list.

Another proposed approach for explaining TI is to implement a
“configural component” (Siemann & Delius, 1998; Wynne, 1995,
1997). Configural models of reinforcement simultaneously consider
the associative strength of isolated stimuli (the value of stimulus B),
as well as the associative strength of stimuli within the context of a
specific stimulus pairing (the value of stimulus B in the context of the
pair BC). A purely configural model would treat each stimulus pairing
as an unrelated experiment, whereas traditionally associative models
would be purely “elemental” (assigning an associative strength to
each stimulus in general, with no configural component). Those
proposed as candidates for TI take a weighted contribution of the
elemental and configural associative strengths.

Lazareva and Wasserman (2012) performed an important experi-
ment to rigorously test several associative models of TI, including the
value transfer and configural approaches. They argued that previous
studies of TI had guaranteed that all adjacent pairs received equal
exposure during training. However, the empirical literature had not
established whether performance would be disrupted if some pairs
were presented more often than others. If, for example, the pair DE
was presented much more frequently than the pair BC, then the
selection of D would be paired with reward delivery more often than
the selection of B. For certain training scenarios, the associative
models they tested predict that, when presented with a subsequent
pairing of BD, subjects should favor D over B because of D’s greater
association with reward. In general, presenting one pair repeatedly
and reinforcing the choice of one item from that pair should drive that
item’s “reward value” toward ceiling.

Configural models are designed to prevent this from occurring,
they remain agnostic about entirely novel configural pairings.
Therefore, although a correctly implemented configural model will
not favor D over B as a function of massed presentation of DE,
neither would such a model favor B over D. At best, response
accuracy during the first presentation of BD would occur at
chance. The configural model proposed by Wynne (1995) consis-
tently fails to exceed chance even before massed trials (Lazareva
& Wasserman, 2012; Figure 4), whereas the model proposed by
Siemann and Delius (1998) has mixed success before massed

trials, and only consistently fails afterward (Lazareva & Wasser-
man, 2012; Figure 5).

To compare these model simulations to real performance, Laza-
reva and Wasserman first trained pigeons on four adjacent pairs in
a five-item list, presenting each pair with equal frequency. They
then presented only the pair DE for hundreds of trials before they
assessed TI performance. They also performed computer simula-
tions to train and test whether associative models could perform TI
following “massed trials” training to one pair. The results were
clear: Pigeons who received massed DE trials showed equivalent
performance to other animals who were trained equally on all
pairs, and both groups consistently favored B over D. However,
each associative model’s performance was disrupted by massed
presentation of DE, with performance either reduced to chance or
displaying a heavy initial bias toward choosing D.

Lazareva and Wasserman’s results make clear that the associa-
tive models they tested were conceived with a narrow set of task
designs in mind. TI is ordinarily trained with equalized frequencies
for all stimulus pairs, but this constraint shouldn’t be expected in
real-world choice scenarios. It is implausible that animals evolved
with perfect counterbalancing as a feature of the environment, so
models of transitive inference should be resistant to unequal pre-
sentation frequencies. A similar point is made by an earlier paper
(Weaver, Steirn, & Zentall, 1997) that demonstrated that value
transfer models could not explain successful TI in pigeons when
all pairs were trained uniformly, but terminal items yielded re-
wards 50% of the time.

The development of more robust models of TI requires new
experiments that manipulate previously uniform task parameters.
By definition, although associative models seek to maximize pos-
itive outcomes and minimize negative ones, they only come to
optimal conclusions when training carefully balances exposure to
all outcomes. A key benefit of representation-based learning is that
representations can decouple the relationship between stimuli and
their individual reward histories, and this renders their inferences
robust against biased sampling.

Although humans, rhesus monkeys, and pigeons all display
serial learning, they do not do so in identical ways (Scarf &
Colombo, 2008). Although some studies of TI in birds have
yielded TI performance comparable to rhesus monkeys (e.g.,
Bond, Wei, & Kamil, 2010), similar cognitive functions in birds
and mammals may depend on wholly divergent brain architectures
(Güntürkün & Bugnyar, 2016). Lazareva and Wasserman’s dem-
onstration that pigeon performance is not disrupted by massed
trials has yet to be tested in primates.

It is also unclear from the literature how humans and monkeys
might compare under mass trial manipulations. Studies of TI,
including those that compare multiple primate species (examples
include Merritt & Terrace, 2011; Jensen et al., 2015), ordinarily
present stimulus pairs in an evenly balanced fashion. The conse-
quences of deliberately presenting some pairs more than others
remain largely unexplored. This has contributed to the difficulty in
distinguishing between associative and cognitive explanations for
performance. The two accounts predict different consequences of
training using an uneven balance of stimulus pairs, so such ma-
nipulations should help us evaluate the relative merits of each
account.

We performed an experiment in which both rhesus macaques
and human participants learned 7-item lists. In both cases, training
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began with massed presentation of the last two list items, pair FG.
Because F was always correct when paired with G, the initial
reward likelihood associated with F approached 100%. After a
block of FG pairs, subjects were trained on all pairs that included
either F or G (to test what effect FG training had), as well as the
adjacent pairs AB, BC, CD, and DE. Then, in a final phase, all 21
possible pairs were tested.

To date, no study of TI has deliberately overtrained a stimulus
pair in advance of a traditional adjacent-training-all-pairs-testing
task design. As such, our study is not a replication of Lazareva and
Wasserman’s manipulation, but rather is a complementary design
investigating a related question about cognitive versus associative
interpretations of TI. If association with reward was a substantial
influence, then subjects should develop a bias toward choosing F.
Such a bias should disrupt performance during the second phase of
the experiment, subsequent learning during that phase, or both.

Method

Animal Subjects

Data were collected from three adult male rhesus macaques
(Macaca mulatta): F, H, and L. All subjects had prior experience
performing transitive inference tasks, as described by Jensen and
colleagues (2015). Subjects were housed at the New York Psychiatric
Institute and its Department of Comparative Medicine, under the
oversight of Columbia University’s Institutional Animal Care and Use
Committee (protocol AAAN7101). All operations were in accordance
with the recommendations of the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.

Animal Apparatus

Subjects were seated in an upright primate chair during the
experiment. Head movements were restrained by head post, and
eye movements were recorded using a monocular scleral search
coil (Judge, Richmond, & Chu, 1980; Robinson, 1963; CNC
Engineering, Seattle, WA). Eye movements (saccades, followed
by fixation) were used by the animal to signal which stimulus was
selected during each trial. Unless otherwise indicated, the appara-
tus was identical to that used by Teichert Yu, and Ferrera (2014).

Human Participants

Participants were 33 college undergraduates (21 women, 12
men) who earned course credit. The experiment was approved by
Columbia University’s Institutional Review Board (protocol
AAAA7861), confirming to the guidelines for human research set
forth by the American Psychological Association.

Human Apparatus

Participants performed the experiment on a personal computer
(iMac MB953LL/A), with responses made via a mouse-and-cursor
interface.

Procedure

At the start of the session, the task specified a list order for a set
of seven novel stimuli, here denoted by the letters A through G
(Figure 1, top). Subjects never observed all seven stimuli simul-
taneously; instead, each trial displayed a pair of list items. When

Figure 1. Task and experimental design. Top row, Example of the stimuli in a seven-item transitive inference
list. Because B � C � D, C is a correct answer when paired with D (or any stimulus of lower rank), but is
incorrect when paired with B (or any stimulus of higher rank). Bottom left, Sequence of events in a single trial.
After an intertrial interval, a blue start stimulus appears. Selecting it brings up a pair of images from the implied
list. If the correct item is chosen, a green check mark is displayed, followed by reward delivery. If the incorrect
item is chosen, a red X is displayed, followed by a 2-s time-out. Bottom right, Design of experimental phases.
In Phase 1, subjects are presented with only FG; in Phase 2, all adjacent pairs, as well as all pairs including F
or G, are trained; in Phase 3, all pairs are trained. Pairs within the gray triangle were all stimuli that excluded
F and G. See the online article for the color version of this figure.
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stimuli were presented, a response was considered “correct” if it
was made to the earlier item in this list. The structure of each trial
is depicted in Figure 1 (left): Following a response to a start
stimulus, subjects were then presented with the list pairing. Feed-
back regarding whether the response was correct (green check
mark) or incorrect (red X) was given immediately. Animal subjects
also received water via a tube for each correct response.

An experimental session always consisted of a fixed number of
trials. Animal subjects completed 760 trials in a session, arranged
into three phases (Figure 1, right). During Phase 1, the pair FG was
presented 40 times. During Phase 2, 15 of the possible pairings
were presented: All “adjacent pairs” (those having a symbolic
distance of 1), and all other pairs that included either F or G
(regardless of symbolic distance). The set of all pairings of F with
a novel stimulus are hereafter denoted as “xF,” and all novel
pairings with G are denoted as “xG.” The aim of this phase was to
train the ordering of stimuli A through E relative to F and G, as
well as to test performance on F-and-G-related pairs. Each of the
15 pairs was presented 20 times, resulting in a total of 300 trials.
Finally, in Phase 3, all 21 pairings were presented. Again, each
pair was presented 20 times, so Phase 3 lasted 420 trials. In all
phases, the positions of the stimuli were randomly counterbal-
anced, such that the correct response was on each side of the screen
half the time. Each subject completed multiple sessions (34 ses-
sions for F, 76 sessions for H, and 20 sessions for L), with a new
set of stimuli learned during each of those sessions. Monkeys
performed differing numbers of sessions because of scheduling
constraints.

Figure 1 (right) shows how all 21 pairs are organized with
respect to two predictors. The first, symbolic distance, is well-
represented in the literature: It is the absolute difference between
stimulus ranks. The second is “joint rank,” which is the sum of the
stimulus ranks (here, low ranks correspond to earlier list items).
For example, the pair BD has a distance of 2 and a joint rank of 6.
There are several motivations for describing pairs in terms of joint
rank. First, each stimulus pair corresponds uniquely with a partic-
ular combination of distance and joint rank (e.g., no pair other than
BD has a distance of 2 and a joint rank of 6). This gives each pair
a specific coordinate within the predictor space. Second, joint rank
is strictly orthogonal to distance. The largest joint rank (FG, joint
rank of 13) and the smallest (AB, joint rank of 3) both have a
symbolic distance of 1. This permits distance and joint rank to be
used simultaneously as predictors without a collinearity confound.
The intuitive interpretation of these two descriptors is that distance
corresponds to the relative dispersion of stimuli along the number
line, whereas joint rank corresponds to their absolute position
within the list.

Human participants experienced the same procedure, albeit with
half as many trials in each condition. Thus, they experienced Phase
1 for 20 trials, Phase 2 for 150 trials, and Phase 3 for 210 trials. All
learning occurred in one session.

It is important to emphasize that our procedure did not make use
of “probe trials” in which a response preference was elicited
without subsequently providing feedback. Throughout our proce-
dures, a correct response was always rewarded. As such, our data
cannot be divided into “training” and “test” periods. Instead,
subjects learned continuously, and we sought to measure that
continuous learning using a time-series analysis.

Results

To evaluate how estimated performance changed as a function
of learning, we used Gaussian process (GP) regression (Rasmussen
& Williams, 2006). GP regression is a highly flexible nonlinear
estimation technique that is well suited to time series analysis. It
has been called a categorical analysis with an infinite number of
categories, arrayed along some continuum (McElreath, 2016). One
continuum of interest is time: Response accuracy for each pair
changes over time. Orthogonal to time are the continua of sym-
bolic distance and joint rank: Response accuracy is also expected
to change in some way as a function of these variables.

GP regression is performed by estimating the extent to which
every observation covaries with every other, given some prior
metric for comparing the distance between observations. Each
observation should influence other nearby observations (e.g., that
occur at similar times) more than they should do so for observa-
tions that are distant. That said, observations should also influence
one another as a function of their similarity (Lucas, Griffiths,
Williams, & Kalish, 2015). Although such an analysis is not
possible using classical methods (because of irreducible uncer-
tainty regarding a solution for the joint contributions of distance
and similarity), Bayesian methods make GP regression possible by
imposing a strong prior belief that similarity and distance are
related (Gelman et al., 2013). This permits robust time-series
analysis to be performed without constraining the data to a partic-
ular functional form. This approach avoids difficulties encountered
in past studied of TI, in which the assumptions of the regression
model distort estimates of performance. For example, using logis-
tic regression to model TI learning (Jensen et al., 2013) imposes
the assumption that performance (a) increases or decreases mono-
tonically, and (b) must reach 0.0 or 1.0 at the limit for any nonzero
slope. Because monkeys tend to make errors regardless of amount
of training, logistic regression is guaranteed to provide a poor
estimate given a sufficiently long time series.

GP regression, contrastingly, depends on relatively few assump-
tions, instead allowing the data to dictate the form taken by the
time series estimate. The chief constraint is that GPs are presumed
to be smooth (i.e., differentiable without discontinuity). Beyond
this constraint, one can imagine the model estimate as the posterior
distribution of the relative density of all possible smooth curves,
conditioned on the data and the informative prior. Although a full
GP model can be computationally prohibitive to fit, requiring
runtime O(n3) for n observations, we took advantage of the “ex-
pectation propagation” approximation (Tolvanen, Jylänki, &
Vehtari, 2014) implemented in the GPstuff toolbox (Vanhatalo et
al., 2013) to greatly accelerate estimation. The scripts implement-
ing this analysis in MATLAB (Version 8.4.0, The MathWorks
Inc., Natick, MA, 2014) are included in the online supplemental
material.

Because models were fit using Bayesian methods, the results
that are reported are generally posterior probability distributions,
which represent the “state of belief” of the analysis after taking the
data into account. Our “credible intervals” each represent the
middle X% percentile ranges in the posterior probability distribu-
tion for the estimated quantity. The interpretation of the credible
intervals reported for parameters is slightly different from the more
traditional “confidence intervals” invoked under the classical sta-
tistical paradigm, because credible intervals take the prior into
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account. We do not report p values, nor use null hypothesis
significance tests, because our objective is to obtained estimated
measures of performance.

We first estimated how response accuracy and RT changed over
the course of the experiment, doing so independently for each
stimulus pair in each phase. Responses were coded as correct (1)
or incorrect (0), such that the probability of a correct response
could be represented in terms of log-odds (with support from
negative to positive infinity). The GP regression then fit perfor-
mance in log-odds space. These model fits were converted back to
probabilities using the logistic transformation, yielding a continu-
ous probability of correct responses that was smooth with respect
to time. Thus, response accuracy was modeled as a smoothly
changing probability of a correct response. Reaction times were
presumed to be approximately Gaussian on a log scale, and fit
accordingly.

Figure 2 (top row) shows response accuracy (estimated the GP
regression and subsequently averaged across subjects using a
bootstrapping procedure) for monkeys choosing pairs that included
either stimulus F (olive, dashed) or stimulus G (cyan, solid).
During the 40 trials of Phase 1 (presentation of FG only), response
accuracy on the pair FG rapidly improved, reaching approximately
90% correct selection of F. At the start of Phase 2, however,
accuracy for FG dropped to 70%. Phase 2 also began with above-
chance performance for all trials that paired either F or G with a
novel stimulus (A thru E). This is unsurprising in the case of xG

pairings because choosing G did not yield a reward in any phase of
the task. However, consistent above-chance responding on xF
pairs during Phase 2 entails avoidance of F, despite F having
yielded reliable rewards during Phase 1. For example, the first time
EF was presented (Figure 2, top right, trial #41), E was chosen
60% of the time despite that it had never been previously rein-
forced or even presented to the subject. Similar results were
obtained for all the novel stimuli. Thus, prior preference for F
while it was paired with G did not prevent subjects from rapidly
learning to not choose F when paired with the novel stimuli A
through E.

In Phase 3, all 21 stimulus pairs were presented. By the end of
Phase 3, a very pronounced symbolic distance effect was evident:
Accuracy for Distance 1 pairs tended to be lowest, whereas the
highest accuracy was associated with the Distance 5 pairs. Figure
2 (bottom row) shows mean response accuracy for pairs composed
of the first five items in the list, A through E. These are color-
coded by symbolic distance (red, solid � Distance 1, blue,
dashed � Distance 2, green, dotted � Distance 3, violet, dot-
dashed � Distance 4). Adjacent pair performance rose above
chance in the case of AB, but remained approximately at chance
levels during Phase 2 for the other pairs. However, despite low
performance, a symbolic distance effect was observed at the trans-
fer to all pairs in Phase 3.

Figure 3 presents the log RTs, following the same format as
Figure 2. As in Figure 2, models were fit for each animal sepa-

Figure 2. Proportion of correct responses by monkeys for stimulus pairs over successive trials. Shaded areas
represent 99% credible intervals. Top row: Performance on stimulus pairs that included F and/or G for Distances
1 through 5. Performance on all such pairs exceeded chance levels, and performance on xG pairs consistently
exceeded that of xF pairs. Despite rapidly climbing to nearly 89.0% accuracy, the pair FG dropped immediately
to 69.6% accuracy at the start of Phase 2. Bottom row: Performance on pairs composed of items A through E.
Performance on adjacent pairs generally remained low during Phase 2, but improved somewhat in Phase 3. In
addition, the six novel pairs in Phase 3 showed enhanced performance, consistent with a symbolic distance
effect. See the online article for the color version of this figure.
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rately, then subsequently averaged using bootstrapping. Monkeys
tended to respond very quickly, exp(�1.35) � 0.26 s, as is typical
for oculomotor choice RTs. Although some very mild differences
were evident (the pair AF evoked faster responses than the pair
EF), it seems reasonable to conclude that RTs were near a lower
floor for the fastest times that subjects could in principle achieve.

Figure 4 presents mean response accuracy for human partici-
pants. Unlike monkeys, participants acquired a stronger preference
for F during Phase 1. Despite this, they immediately discounted F
at the beginning of Phase 2. They then showed rapid acquisition,
racing to ceiling on all xF and xG pairs. Performance also rapidly
rose above chance levels for adjacent pairs in Phase 2, and a
symbolic distance effect was not evident. If anything, performance
on adjacent pairs tended to slightly exceed the Distance 2 pairs.

Figure 5 presents the log RTs of participants. Humans re-
sponded much more slowly than monkeys, exp(0.5) � 1.65 s, but
unlike monkeys they became systematically faster over the course
of the session. Signs of a symbolic distance effect were more
evident in the human RTs than in their response accuracy. In
particular, participants tended to respond more quickly to larger
symbolic distances.

The transition at the start of Phase 2 shows several surprising
effects with respect to F. At the start of Phase 2, monkeys appeared
to consistently avoid F, despite consistent reinforcement of its
selection in Phase 1. In addition, monkey response accuracy on FG
appeared to drop abruptly on a single trial, from near 90% at the
end of Phase 1 to near 70% at the start of Phase 2. Humans showed
neither of these effects. Their FG trials remained close to ceiling,
whereas all other xF pairs appeared to begin near chance (albeit

with considerable uncertainty). The patterns of responding to F
suggest different processes at work in these two species.

To get a more precise understanding of this transition, we
examined choices based on order of appearance at this transition,
as shown in Figure 6. The first four points report the estimated
response accuracy for FG during the last four trials of Phase 1 for
both monkeys (Figure 6, left) and humans (Figure 6, right). The
next six points in each plot report the nth instance in Phase 2 of FG
(black, dotted), any xF pair (olive, dashed), or any xG pair (cyan,
dot-dashed). For example, the first xF pair in Phase 2 might be the
pair AF or BF and might not take place until the third or fourth
trial. Thus, the first xF trial in Phase 2 is the first unambiguous
case where some other stimulus should be favored over F.

Figure 6 (left) shows that monkeys chose F less than half the
time on the very first xF trial. It also shows that the drop in FG
performance between phases is indeed an abrupt step downward.
Contrastingly, humans were about 80% likely to choose F during
the first xF pairing, and about 20% likely to choose G during the
first xG pairing. This preference for F was very rapidly corrected.
Thus, whereas monkeys had a prior expectation that F should be
avoided in favor of novel stimuli (because of their prior experience
with the task), humans had no such expectation and thus had to
instead rapidly “unlearn” the associated value of F.

A “novel stimulus bias” might help explain why subjects tend to
succeed at xF and xG pairings. To test for such a bias without a
reward confound, we examined only trials (a) in which stimuli A,
B, C, D, or E were presented for the first time at the start of Phase
2, and b in which another of those five stimuli had previously been
presented. Monkeys appeared to display a bias toward the novel

Figure 3. Monkey reaction times (RTs; log-transformed) over successive trials. Shaded areas represent 99%
credible intervals. Top row: Log RTs for pairs that included F and G for Distances 1 through 5. Reaction times
were generally stable, with slightly faster times observed at larger symbolic distances. Bottom row: Log RTs for
pairs composed of items A through E. Consistent RTs were observed across all such pairs. See the online article
for the color version of this figure.
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stimulus in the pairing (179 out of 293 trials across all three
monkeys), p(novel) � 0.611, 99% confidence interval (CI) 0.534
to 0.682, as did humans (74 out of 125 trials across participants),
p(novel) � 0.592, 99% CI 0.477 to 0.699. Therefore, given two
relatively novel stimuli, both species tended to favor the stimulus
that was entirely novel. Monkeys may have used the same strategy
in xF pairings, in which they favored novel stimuli at about the
same rate (as indicated in Figure 6).

On the other hand, however, monkeys may have avoided F
because “task representation” (Stoet & Snyder, 2003), reflecting
an understanding of the task structure, accrued over the course of
learning many lists. To investigate this possibility, we performed a
logistic regression for each subject, consisting of only trials from
the first 30 trials of Phase 2 across all lists. Response accuracy was
evaluated in terms of an intercept and two predictors: trial number
within a list, and the order in which lists were learned. The
intercept in this analysis estimated response accuracy on the first
trial of Phase 2 in the first list. At the start of the study, subject F
responded to initial xF trials at chance levels, p(correct | xF) �
0.488, 99% CI 0.428 to 0.548. However, subject H responded
above chance, p(correct | xF) � 0.717, 99% CI 0.678 to 0.754, as
did subject L, p(correct | xF) � 0.639, 99% CI 0.564 to 0.70. All
three subjects consistently favored the initial novel stimulus during
their last session, subject F: p(correct | xF) � 0.572, 99% CI 0.512
to 0.630; subject H: p(correct | xF) � 0.711, 99% CI 0.671 to
0.749; subject L: p(correct | xF) � 0.615, 99% CI 0.538 to 0.68.
The analysis is included in the online supplemental material.

GP regression is a continuous time-series analysis that permits
estimates of not only response accuracy, but also the rate at which
performance changes. Figure 7 shows the rate at which monkeys
improved at the start of Phases 2 and 3. These were measured by
converting the probabilities in Figure 2 to log-odds, then obtaining
the average slope of the resulting curves during the first block of
30 trials. At the start of Phase 2 (Figure 7, left), monkeys displayed
an apparent symbolic distance effect with respect to the rate of
learning, an effect not previously reported in the literature. In
addition, learning was generally faster for xF pairs than it was for
xG pairs, or for the entirely novel pairs (AB, BC, DC, DE). By the
start of Phase 3 (Figure 7, right); however, learning rates were
consistently slow. Only novel pairs had a learning rate that ex-
cluded zero from the 99% credible interval.

Figure 8 shows the corresponding learning rate analysis for
human participants, which were very different than those of mon-
keys. First, human learning rates were about an order of magnitude
faster. Second, no symbolic distance effect was evident. Instead,
xF pairs were learned very rapidly at the start of Phase 2 (consis-
tent with Figure 6) and had stabilized by the start of Phase 3.
Another difference was that novel pairs in Phase 3 seemed to be
learned faster when paired with stimulus close to A. This is likely
an example of a terminal item effect, which is only seen at one end
of the list because the other end has already received considerable
training.

To better understand how the symbolic distance effect and
the terminal item effect might manifest in these data, a more

Figure 4. Proportion of correct responses by humans for stimulus pairs over successive trials. Shaded areas
represent 99% credible intervals. Top row: Performance on stimulus pairs that included F and/or G for Distances
1 through 5. Performance on FG rapidly rose to ceiling levels, as did performance on pairs including G. Other
pairs including F began at chance level at the start of Phase 2, but also rapidly rose to ceiling. Bottom row:
Performance on pairs composed of items A through E. Accuracy on adjacent pairs rose steadily on Phases 2 and
3, and novel nonadjacent pairs were above chance (but below adjacent pairs) at the start of Phase 3. See the
online article for the color version of this figure.
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complex GP model combined several predictors. This permitted
estimates to be fit for all stimulus pairs. Trial number was used
as a predict to make a precise inference of performance during
the first trial of Phase 3. In addition, each pair was coded for its

symbolic distance and its joint rank. As noted previously, the
orthogonality of distance and joint rank permits the two to be
used simultaneously as predictors across all pairs. In addition,
estimates may also be obtained for the interpolated regions

Figure 5. Human reaction times (RTs; log-transformed) over successive trials. Shaded areas represent 99% credible
intervals. Top row: Log RTs for pairs that included F and G for Distances 1 through 5. Participants were much slower than
monkeys, but RTs steadily improved over the course of the experiment. Bottom row: Log RTs for pairs composed of Items
A through E. Reaction times to pairs that included Item A sped up most during learning, whereas pairs closer to the “middle”
of the list (such as DE) sped up very little. See the online article for the color version of this figure.

Figure 6. Probability of choosing F and G during a pair’s last four presentations during Phase 1 and first six
presentations during Phase 2. Whiskers represent the 99% credible interval for the parameter, and boxes
represent the 80% credible interval. The probability of choosing F in the context of the pair FG (black, dotted)
is contrasted against the probability of choosing F in the context of all other xF pairs (olive, dashed). Also shown
is the probability of choosing G in the context of all other xG pairs (cyan, dot-dashed). Left: Mean selection
probability for rhesus macaques. Monkeys show a drop in performance between the last presentation of FG in
Phase 1 and its first presentation in Phase 2. In addition, monkeys avoid choosing F even on the first xF pairing.
Right: Mean selection probability for human participants. Although humans avoid G in xG pairings, they show
a brief preference for F during the first presentation of xF in Phase 2. This preference has been fully reversed
after only four presentations. See the online article for the color version of this figure.
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between stimuli, even though no stimulus pairing resides in
those regions. This facilitates understanding of the underlying
estimated function.

Figure 9 shows the estimated probability of a correct response
(top row) and the log RT (bottom row) for all monkeys at the
start of Phase 3. The color coding of each of the pairs is
consistent with that used in Figures 2 through 5, and the novel
pairs at this point in the experiment are AC, BD, CE, AD, BE,
and AE. Both response accuracy and RT show a consistent
distance effect in both familiar and unfamiliar pairs, with larger

symbolic distances associated with higher accuracy and lower
RTs. The added benefit of previously training (in Phase 2) the
pairs including F and G is evident in the asymmetry of these
curves. The case for a terminal item effect in the monkey data
are mixed, however. While pairs including the terminal A and
G appeared to yield slightly higher accuracy, log RTs seemed
closer to linear, with FG being the slowest pair despite being the
most extensively trained.

Figure 10 depicts response accuracy and RTs for human partici-
pants at the start of Phase 3. As in Figures 4 and 5, accuracy was

Figure 7. Estimates of the rate of change of response accuracy for monkeys, measured in log-odds units of
probability per trial. Pairs are sorted by symbolic distance and by joint rank. Boxes represent 80% credible
intervals, while whiskers represent 99% credible intervals. Individual pairs are color-coded identically to Figures
2–5. Left: Learning rate at the start of Phase 2. Pairs including stimulus F tended to show faster improvement,
as did pairs with greater symbolic distance. Right: Learning rate at the start of Phase 3. Novels pairs showed
elevated learning, but all learning rates were low compared with Phase 2. See the online article for the color
version of this figure.

Figure 8. Estimates of the rate of change of response accuracy for humans, measured in log-odds units of
probability per trial. Pairs are sorted by symbolic distance and by joint rank. Boxes represent 80% credible
intervals, while whiskers represent 99% credible intervals. Individual pairs are color-coded identically to Figures
2–5. Left: Learning rate at the start of Phase 2. Pairs including stimulus F tended to show much faster
improvement. Right: Learning rate at the start of Phase 3. Novels pairs showed elevated learning, and most
learning rates were higher than those observed in monkeys. See the online article for the color version of this
figure.
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consistently higher, and RTs slower, than in monkeys. In addition,
however, a much clearer pattern of terminal item effects was evident
(especially for the pair AB). Although a clear distance effect was
evident in the RTs, the evidence for such an effect on accuracy was
much more equivocal. As in Figure 4, performance on adjacent pairs
tended to marginally exceed that of corresponding Distance 2 pairs.
However, Distance 4 pairs tended to outperform Distance 3 pairs, and
Distance 3 pairs tended to outperform Distance 2 pairs, suggesting a
mild distance effect among the six novel pairs. The effect of massed
training of FG was also evident in human RTs, such that xF and xG
RTs were consistently faster than other stimulus pairs.

Data and analyses are provided in the online supplemental
material.

Discussion

Learning and decision-making are thought to depend on an ability
to predict the reward value of alternative actions. Reinforcement-
based theories critically depend on the history of experienced rewards
and seek to explain choices made by nonhuman animals in terms of
associations between stimuli, actions, and outcomes. As an alterna-

tive, cognitive factors appear to also contribute to animal decision
making, whereby representational mechanisms both facilitate and
constrain an organism’s ability to infer relationships between stimuli
and outcomes. The TI paradigm can help disambiguate these contri-
butions, because explaining TI performance in terms of stimulus-
reward associations is especially difficult. Our results support cogni-
tive interpretations of TI performance.

Modifying the manipulation introduced by Lazareva and Was-
serman (2012), we investigated whether TI performance was dis-
rupted by additional training on a particular stimulus pair. Accord-
ing to associative models, when the pair FG is overtrained, it
should drive the association of stimulus F with reward toward
ceiling. Our procedure differed from that of Lazareva and Was-
serman (2012) in several ways: We presented massed trials at the
outset rather than after learning, we always rewarding correct
responses, and we did not use correction trials. If TI depends on
stimulus-reward associations, the reward history of F should lead
to it being favored in pairings such as EF and DF. Even though we
repeatedly presented FG trials in advance of ordinary TI learning
in both rhesus monkeys and humans, we found no evidence of a

Figure 9. Estimates of response accuracy (top row) and log reaction times (RTs; bottom row) in monkeys
during the first trial of Phase 3. Pairs are sorted by symbolic distance and by joint rank. Gray shaded areas
correspond to the 99% credible interval, interpolated between items. Individual pairs are color-coded identically
to Figures 2–5 and also include a horizontal bar to denote 80% credible intervals. Response accuracy displayed
both a symbolic distance effect and a terminal item effect, as well as asymmetry resulting from the additional
training on stimuli F and G. Log RTs displayed a symbolic distance effect, but did not show a clear terminal item
effect. See the online article for the color version of this figure.
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bias for choosing F in subsequent phases of learning. This result is
consistent with the lack of disrupted learning in pigeons reported
by Lazareva and Wasserman (although see Lazareva, Kandray, &
Acerbo, 2015, for a case in which massed DE trials disrupted BD
performance in a subset of subjects).

Following FG training, rhesus macaques displayed a surprising
pattern of behavior. Although novel stimuli paired with G were
more likely to be selected than novel stimuli paired with F, all xF
and xG pairings yielded performance above chance. In other
words, despite a learning history in which F had only ever yielded
reward, subjects systematically avoided F in favor of novel stimuli.
This result, evident in GP estimates of response accuracy (Figure
2), was also found in the accuracy of the very first xF trial of Phase
2 (Figure 6). Every session was performed with novel stimuli, so
subjects could not have had a prior reward association for any
specific stimulus in the F position.

This result may reflect a systematic bias toward novel stimuli.
This is consistent with the finding that rhesus macaques find novel
stimuli to be more salient, and make biased eye movements toward
them (Ghazizadeh, Griggs, & Hikosaka, 2016). Because we pro-
vided massed presentations of FG, this bias was functional. How-

ever, a second explanation, not mutually exclusive with the first, is
that subjects developed a task representation (Stoet & Snyder,
2003), sometimes called a “task set” (Sakai, 2008). Despite having
never seen stimulus F before the current session, subjects had
learned that stimuli like F (i.e., those sharing the characteristic of
having appeared during the initial massed trials) were likely to be
of lower rank than novel stimuli seen later in the session.

The present results are consistent with monkeys having bene-
fitted from a task representation, but do not on their own rule out
a novelty account. A logistic analysis of response accuracy in
terms of both trial number and session number yielded mixed
results: Two monkeys began at chance on xF pairs, whereas the
third began at chance but increasingly avoided F as session number
increased. A satisfactory dissociation of the task representation
hypothesis from the novelty hypothesis is beyond the scope of this
study, because a subject pool of three is too small to make strong
statements about the naïve performance. The current experiment
also cannot distinguish the relative influence of a combination of
the two factors.

Another surprising effect was that despite achieving approxi-
mately 90% accuracy overall during FG training, accuracy on the

Figure 10. Estimates of response accuracy (top row) and log reaction times (RT; bottom row) in humans during
the first trial of Phase 3. Pairs are sorted by symbolic distance and by joint rank. Gray shaded areas correspond
to the 99% credible interval, interpolated between items. Individual pairs are color-coded identically to Figures
2–5 and also include a horizontal bar to denote 80% credible intervals. Human response accuracy showed a
pronounced terminal item effect, but a weak symbolic distance effect. Human RTs, on the other hand, displayed
both effects. See the online article for the color version of this figure.
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pair dropped to around 70% as soon as other stimulus pairs began
to be presented. This effect was evident even when comparing, on
a session-by-session basis, the last FG trial of Phase 1 to the first
FG trial of Phase 2. While this could potentially be another
manifestation of a task representation, another possibility is that
the maintenance of a stimulus pair and inferential reasoning both
draw upon the same working memory resources (Halford, Cowan,
& Andrews, 2007). This is consistent with past studies that have
found that rhesus monkeys perform only slightly above chance on
adjacent pairs after hundreds of training trials (Jensen et al., 2013,
2015). Despite only needing to learn the correct response for 6
adjacent pairs, monkeys seemed unable to memorize the correct
choice for each pair. Past estimates of the capacity of visual
short-term memory (STM) suggest that rhesus macaques are lim-
ited to between one and two items (Elmore et al., 2011). Thus,
poor performance on pairings that animals have seen many times
over may reflect the unavailability of memorization strategies,
leaving more implicit mechanisms to perform the necessary infer-
ences. The present result (wherein FG is selected with high accu-
racy only when presented in a block of identical trials) suggests
that performance in Phase 1 was facilitated by a memory trace of
the previous trial.

A traditional five-item TI task was embedded in our design, with
subjects being trained on adjacent pairs AB, BC, CD, and DE
during Phase 2 before being tested on all pairs in Phase 3. The
pattern of transfer displayed by the monkeys resembles that seen in
previous experiments (Jensen et al., 2015). Phase 2 was unusual,
however, in its continued inclusion of all xF and xG pairs, in
addition to the adjacent pairs. Although there is no logical reason
why exposure to these pairs should facilitate or inhibit learning of
the order of A through E (since neither F nor G were informative
about the relative positions of the remaining stimuli), it is worth
considering whether some interaction might nevertheless have
occurred. A possible future experimental design might be to split
Phase 2 into two periods: An xF/xG only period (to test the effect
of massed trials) and an A-through-E period (in anticipation of
testing in the final phase). In particular, training A-through-E
before presenting xF/xG pairs could provide a way to disentangle
the novelty/task set ambiguity of the present study.

Our human participants displayed a different pattern of behavior
from the monkeys. Superficially, this pattern more closely resem-
bled the expectations from associative models: Participants fa-
vored F on the very first xF pairing, whereas they avoided G on the
first xG pairing. Humans adapted very rapidly, however, correctly
avoiding F by the fourth xF presentation. The speed of human
adaptation to xF pairs was much faster than any other learning
displayed in this study, which is especially notable given that
participants were task-naïve. Associative models with very fast
learning rates are prone to unstable behavior, on account of their
oversensitivity to strings of good and bad luck. Furthermore, the
humans’ very rapid learning did not appear to be a feature of the
transition from Phase 2 to Phase 3, as would be expected if rapid
learning was a mere consequence of an associative learning rate.

In both the monkey and human cases, the stimuli A through E
effectively offered a second, embedded TI task, with adjacent-pair
training during Phase 2 and all-pair testing during Phase 3. Hu-
mans and monkeys both successfully inferred the relationships
between nonadjacent test pairs from this set with no evidence of
disruption because of overtraining of F. This embedded task also

permitted measurement of bias for novel stimuli, which humans
displayed at rates comparable to that of the monkeys. In the case
of xF, the reward history of F appears to have mitigated or
overridden that bias on the first trial.

Overall, the present human and monkey results display both
consistencies and differences with Lazareva and Wasserman’s
pigeon data. On the one hand, FG training did not disrupt learning
of stimuli A through E. Monkeys never favored F, despite initial
rewards earned from FG. They appeared to exploit a task repre-
sentation to anticipate F’s undesirability relative to novel stimuli.
Beyond that anticipation, their performance otherwise displays
classical symbolic distance and terminal item effects. One of the
most curious effects was a drop in the accuracy of FG choice at the
start of Phase 2.

Human behavior at the start of Phase 2 did not resemble that of
monkeys. Participants very briefly favored F, but they overcame
their initial bias almost immediately. They also did not display
drops in response accuracy to any pairings following phase tran-
sitions.

It would be inappropriate to compare monkey and human per-
formance directly in this study. The two species made responses
using a different modality (eye movements for the monkeys vs.
mouse clicks for the humans). Past human work suggests that
humans responded similarly in binary choice paradigms across
different response modalities (Szumska, van der Lubbe, Grzecz-
kowski, & Herzog, 2016), but it is unknown whether monkeys
similarly generalize. Training also differed with respect to their
overall experience with the task (monkeys completing dozens of
sessions with different lists vs. a single session for humans).
Human performance would very likely look different if partici-
pants had learned at least 20 lists apiece. A matched study, in
which humans and nonhumans experience identical procedures,
would be a worthy design for a future study. Nevertheless, if either
species had relied on a stimulus-reward-based associative strategy,
then the high rate of reward for stimulus F should have yielded a
preference for F.

Time-Series Analysis of TI

Traditionally, studies of TI train subjects extensively on adja-
cent pairs, then “test” them using nonadjacent pairs. The reported
duration of training in such studies is not consistent from one
article to the next. Many labs end training based on a performance
criterion, so subjects may experience training periods of dramati-
cally different lengths. Because the aim of a behavioral test is to
assess performance during a cross-section in time, all that can be
ascertained during test trials is response accuracy and RT at the
moment of the test.

In this study, we instead approached TI performance as a time
series, with the expectation that subjects would continue to accrue
information over the course of successive trials, and that perfor-
mance would improve accordingly. Using GP regression, we could
construct a much more detailed picture of how learning unfolded
for each stimulus pair in both species.

Rather than report performance as a function of stimulus pair,
Figure 7 depicts the rate of change for monkey response accuracy,
doing so in terms of log-odds units of probability. As far as we are
aware, the only method previously used to measure learning rate in
studies of TI has been “trials to criterion” (e.g., Gazes et al., 2012),

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

242 JENSEN, ALKAN, MUÑOZ, FERRERA, AND TERRACE



making ours the first study to examine the first derivative (i.e.,
instantaneous change) of response accuracy directly. Figure 7
reveals an intriguing possibility: A symbolic distance effect for
learning rate. The implication is that, when measured in terms of
log-odds, stimulus pairs separated by larger symbolic distances are
not only expected to have higher accuracy, but also to improve
more rapidly as additional training unfolds. Realistically, this effect
cannot last: As performance reaches ceiling, learning rates drop to
zero. Nevertheless, there is no evidence that prior overtraining of F
impaired the rate at which monkeys learned to avoid F.

Figure 8 depicts the rate of change for human performance. The
difference in scale compared with monkey learning is striking,
with the mean learning rate as much as 10 times faster for humans.
The pattern of learning was qualitatively different between the two
species: At the start of Phase 2, humans made steady progress on
most pairs (including all novel adjacent pairs), and also made very
rapid progress on all xF pairs. Although it is intuitively obvious
that humans and monkeys differ in their rate of learning (cf. visual
comparisons of performance in Figures 2–4), the analysis of the
learning rate provides a more quantitative account of that differ-
ence. This difference is even more striking given the lack of
experience humans had with the task relative to the monkeys, a
reflection of the “profound discontinuity” between human and
nonhuman cognition described by Penn, Holyoak, and Povinelli
(2008).

Comparisons of learning rates also provide a new way to com-
pare the predictions of different models of TI. This, in turn, can be
used to place much more severe constraints on models that seek to
explain behavior. Additional studies will be needed to determine
how learning rate effects manifest in different species and in
various experimental preparations.

Task Awareness and Task Representation

Task “awareness” has been a major focus in the human study of
TI (Greene, Spellman, Dusek, & Eichenbaum, 2001; Lazareva &
Wasserman, 2010; Martin & Alsop, 2004), and it has been pro-
posed as an explanation of the difference between human and
monkey TI performance (Moses, Villate, & Ryan, 2006). In most
cases, task awareness is defined in terms of verbal report: If a
participant can deduce (and subsequently report) that the stimuli
belong to an ordered hierarchy, they are considered to be “aware;”
all others are “unaware.” Those participants who could not ver-
bally articulate the structure of the task also perform poorly on the
inferential test trials (Frank, Rudy, Levy, & O’Reilly, 2005; Laza-
reva & Wasserman, 2010; Libben & Titone, 2008; Smith & Squire,
2005; however, see Greene et al., 2001; Siemann & Delius, 1996).

Unfortunately, the way awareness has been defined does little to
clarify the underlying cognitive mechanisms of TI. Although many
reports link awareness and successful inference for test pairs in
humans (Lazareva & Wasserman, 2010; Libben & Titone, 2008),
it is unclear whether the two can be dissociated and, if so, which
precedes the other. It is also unclear how to reconcile these
findings with reports of TI in unaware humans (Greene et al.,
2001; Siemann & Delius, 1996;). Moses, Villate, Binns, Davidson,
and Ryan (2008) argue that TI depends not on a single brain region
or cognitive faculty, but rather on “cognitive integrity” across
multiple subsystems.

While it is true that monkeys differ from “aware” humans in a
variety of respects, they also differ from “unaware” humans in an
important way: the monkeys display transitive inference, whereas
unaware humans, at least according to most reports, do not. This
raises an important question: If a human’s task awareness is linked
to making successful transitive inferences, are analogous mecha-
nisms involved in nonhuman TI? The “awareness” label in the
human literature relies on verbal report, so macaques by definition
do not qualify. Nevertheless, even if macaques have a subjective
experience of TI that falls far short of human experience, it may be
that some measurable distinction exists between their experience
and the total absence of awareness. A range of theoretical con-
structs regarding animal cognition have been proposed whose
functions may overlap with the task awareness reported in humans.

The observed above-chance performance on xF pairs, in which
animals avoided F despite its reward history, is consistent with the
claim that monkeys benefited from some “task representation”
(Sakai, 2008; Stoet & Snyder, 2003). Task representations, in this
context, operate as superordinate frameworks within which current
learning is embedded. Thus, as subjects learn how to respond to
the current session’s pair FG, they may also learn how F and G fit
into a broader context learned during previous sessions. However,
above-chance xF performance is also consistent with a bias toward
novel stimuli, which may or may not be innate. One way to distin-
guish novelty-seeking from task representation would be to replicate
Lazareva & Wasserman’s (2012) design directly, because their result
does not suffer from a stimulus novelty confound. Another, noted
previously, is to provide some training of A-through-E pairs without
providing a transitive link to either F or G.

The comparative study of task representations has yet to reach a
consensus regarding either terminology or theoretical focus. The
study of how animals learn overarching task demands has also
been described as “rule representation” (Bunge & Wallis, 2008),
“abstract concept learning” (Wright & Katz, 2007), or simply “task
context” (Asaad, Rainer, & Miller, 2000). Although the evidence
suggests representations more abstract than those proposed by
associative models, the available evidence falls considerably short
of a demonstration of “task awareness,” which as defined in
humans is explicitly metacognitive (Terrace & Son, 2009). Al-
though several lines of behavioral evidence are consistent with
hypothesized metacognitive faculties in animals (Smith, Couch-
man, & Beran, 2014), whether metacognition can be inferred from
behavior alone may be formally undecidable (Clark & Hassert,
2013).

As a consequence, building a bridge between task awareness
and task representation will require a better understanding of the
implicit mechanisms of human task representation. When the
evidence is approached from this perspective, there are good
reasons to think that humans differ from macaques with respect to
how task representations influence behavior. Humans, for exam-
ple, are adept at “task switching” paradigms. These require par-
ticipants to make choices according to one of several possible rules
(Kiesel et al., 2010). When faced with task switching, rhesus
macaques have difficulty suppressing the inappropriate rule. In-
stead, both behavioral (Avdagic, Jensen, Altschul, & Terrace,
2014) and neurophysiological (Klaes, Westendorff, Chakrabarti, &
Gail, 2011) evidence suggest that macaques consider both rules
simultaneously, resulting in interference. One pair of studies
makes this species difference especially clear. Stoet and Snyder
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(2003) demonstrated that, over the course of tens of thousands of
trials, macaques had difficulty using a cue to switch from one task
representation to another. Humans performed an identical proce-
dure for an equally lengthy training period, and never displayed
interference between task sets (Stoet & Snyder, 2007).

In this spirit, future comparative studies of TI should place
greater emphasis on exploring how task representations are con-
structed, maintained, and deployed by different species. The first
step in doing so is to study how task representation contributes to
TI performance in humans without falling back on self-report.

Conclusion

Initial overtraining that repeatedly associated a single stimulus
with reward did not impair monkeys’ or humans’ ability to avoid
choosing that stimulus when appropriate in the context of TI
learning. Instead, both species used information gleaned from the
task to improve their performance, albeit in different ways. Mon-
keys performed above chance with respect to F and G being paired
with other stimuli, either because of an innate bias for novelty or
their prior experience with the task. Humans, on the other hand,
were task-naïve and showed an initial preference for F which was
almost immediately replaced with avoidance. This initial prefer-
ence for F was present despite an apparent bias toward novel
stimuli. In addition to performance, our GP regression permitted
an analysis of the learning rate, which differed dramatically in
monkeys and humans. Although the relative association of stimuli
with reward is a useful strategy under some circumstances, it does
not appear to be how transitive inference is performed. Instead,
cognitive models that relate stimuli to one another along some
ordinal dimension are needed to account for the full range of
published TI results.
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