When / Where
Mondays, 2:10-4pm, Schermerhorn 405

Instructor
Dr. Mariam Aly [ma3631@columbia.edu]
Office hours: Mondays and Fridays 4-5pm or by appointment, Schermerhorn 355D
no office hours or on academic or university holidays

Prerequisites
UN1010 (Mind, Brain, & Behavior), UN2430 (Cognitive Neuroscience), or equivalent introductory course in neuroscience or cognitive psychology, and instructor’s permission

Bulletin description
This seminar will give a comprehensive overview of episodic memory research: what neuroimaging studies, patient studies, and animal models have taught us about how the brain creates, stores, and retrieves memories.

Detailed description of the course
In the first part of the class, we will examine the neural underpinnings of basic memory phenomena, such as encoding, storage, and retrieval. We will then delve into theories of memory and current debates in the field. Finally, we will discuss challenges to the traditional views of “memory systems” in the brain. The readings comprise empirical papers (which report new experiments and their results) and review papers (which summarize and synthesize a large body of research). Our goal is to arrive at a deeper understanding of what we know about memory and what we are still struggling to understand.

Each week will be devoted to a different topic. Class will begin with a brief overview (by the instructor) of the topic for that week. Most of the class will comprise student presentations and discussion. Each student is responsible for one presentation on the topic of their choice. Each student must e-mail the instructor (as soon as possible after the first class) with their top three choices, and every effort will be made to give each student one of their preferences. Each student can either thoroughly present one paper or briefly present two papers. The papers can be from the required or supplementary readings (see comprehensive reading guide).

Course goals and learning objectives
This course will give you training in reading primary research articles and review papers, the majority of what scientists read. Primary research articles and review papers are a much different reading experience than textbooks, and reading, dissecting, and critically thinking about them is a key skill for the developing scientist. This course will also enable you to engage in constructive scientific conversations and debates, which will broaden and deepen your understanding of cognitive neuroscience research, and teach you about which questions you should be asking as you read and hear about new results, and how to interpret them in the context of other studies. Furthermore, this course will enable you to learn how to effectively communicate, with both oral presentations and written work. You will learn how to review the literature and find relevant peer-reviewed papers, thus allowing you to keep up to date in any field of science. You will also gain a deep understanding of the links between
different areas of episodic memory research, and gain an appreciation of the development of this research over several decades, challenges to this research, and the latest advancements.

Role in the Psychology curriculum
PSYC UN3445 is a seminar designed particularly for undergraduates majoring in Psychology or Neuroscience & Behavior and for students participating in the Psychology Post-Baccalaureate Certificate program. It fulfills the following degree requirements:

- For the Psychology major or concentration in Columbia College and in the School of General Studies, for the Psychology minor in Engineering, and for the Psychology Post-Baccalaureate Certificate program, this class will meet the Group II (Psychobiology & Neuroscience) distribution requirement.
- For the Neuroscience and Behavior joint major, it will fulfill the fifth Psychology requirement for “one advanced psychology seminar from a list approved by the Psychology Department advisor to the program.”
- For Psychology Post-Baccalaureate students and for Psychology majors who entered Columbia in Fall 2013 or later, it will fulfill the seminar requirement.
- For the Barnard Psychology major, this class will fulfill the senior seminar requirement.

Course schedule
September 12: Introduction (no thought piece due)

Part 1: Discovering the neural underpinnings of memory
September 19: Patient studies of episodic memory
September 26: Neuroimaging studies of episodic memory
October 3: Do animals have episodic memory?
October 10: Place cells: building blocks of memory?

Part 2: Formulating theories and debates
October 17: Divisions of episodic memory
October 24: Computations of the hippocampus
October 31: Is the hippocampus fundamentally “spatial”?
No class November 7 – Academic Holiday
November 14: Organizing memories in time

Part 3: Challenges to the “memory systems” view
November 21: The role of memory systems in perception
November 28: The role of the hippocampus in imagination
December 5: How the hippocampus influences, and is influenced by, attention
December 12: Implicit memory in “declarative memory” systems

Grading
Seminars are meant to be engaging discussions. To participate in these discussions, you must carefully read the relevant papers before class and contribute to the conversation. Grading will be based on whether you have shown that you have read the papers, thought deeply about them, can write about them, and your contribution to class discussions.
Overview
25%: attendance and participation
25%: thought pieces (due 10pm the evening before each class)
25%: class presentation, including mandatory meeting with the instructor
25%: final paper, including 1-paragraph proposal (1-paragraph proposal due by 11:59pm Nov 14; final paper due by 11:59pm Dec 12)

Attendance and Participation
Every student has something valuable to share, and I would love to hear your voice. Everyone is encouraged and expected to attend and participate in every class. Attendance will be taken at the beginning of each class, and each student should contribute at least once (but preferably more!) to each class discussion. If participating in class is difficult for you, please see me and we can discuss other ways that you can contribute. Attendance and participation are worth 25% of your grade.

If you believe you may have COVID or have been in contact with someone who has tested positive, you should stay home! There will not be an attendance penalty. Just let me know. Please also see COVID-19 Policies, below, for more information.

If you are sick for another (not COVID) reason and have to miss class, you must provide me with a doctor’s note confirming that you have seen a physician either the day you missed class or shortly (1-2 days) before. I will understand if you have not been able to see a physician due to COVID restrictions on hospital visits. If you have to miss class for another reason that you believe should be excused, you must e-mail me in advance of class to explain your situation.

Thought Pieces
To ensure that everyone reads the material, each student must submit a short (1 paragraph, ~250-400 words, not a hard word limit) ‘thought piece’ via Courseworks the evening before each class (no later than 10pm). Thought pieces must also be handed in the week that you present – these will be much easier for you! The thought piece should describe something you found interesting in the readings (and why it was so interesting), or raise substantive questions about something you found confusing (and why it was so hard to understand). Specifically, you should briefly summarize a point from the readings (e.g., a specific result, a theoretical viewpoint, an analysis technique; this is worth 2 points), raise a question or an observation about it (this is worth 2 points), describe what led you to that question or observation (this is worth 2 points), and what new evidence could be useful for answering the question or supporting/contradicting the observation (this is worth 2 points). This allows me to make sure everyone is on track, and get a better handle on what might be challenging in the readings. Grading will be based on your ability to follow the instructions for the thought piece (as noted above), as well as the clarity of writing (2 points). Thought pieces are worth 25% of your grade (each thought piece is graded out of 10, as noted above).

Class Presentation
Each student is also expected to present for one class period: choose at least one paper assigned that week (more than one is encouraged; you can choose any listed papers, whether required reading or not) and make a slide presentation to lead the class through the paper(s). Depending on class size, there may have to be more than one presenter in any given week. If this happens, the instructor will contact the individuals presenting on the same day, and they should coordinate to make sure they present different papers. Each student is required to meet with me before their presentation so that they can receive feedback and have time to incorporate edits before their class presentation. Doing
so can substantially improve your grade, and not doing so will result in an automatic 5-point deduction from your presentation.

For empirical papers, describe the question (this is worth 5 points), the method (this is worth 10 points), the results (this is worth 10 points), the conclusions (this is worth 5 points), and then bring up points for discussion (this is worth 10 points). Don’t get bogged down by details in the methods, especially for neuroimaging studies: convey the critical parts of the method that we need to understand the paper.

For review papers, describe the big question they attempt to answer (this is worth 5 points), the different theories they bring up (this is worth 10 points), the evidence for each theory (this is worth 10 points), the conclusions reached (this is worth 5 points), and then bring up points for discussion (this is worth 10 points).

Clarity of presentation (speaking and slides) is worth an additional 10 points.

Often, papers are much too comprehensive to go over in detail in a short presentation; you therefore must decide what the main points are and communicate those. If some sections in a paper are tangential to the main topic, feel free to skip them in your presentation. You can present one paper thoroughly, or two or more papers more briefly. You can bring in additional material as well (this is highly encouraged!). And remember: presentations are meant to be engaging, and you should try to involve your classmates as much as possible (e.g., by posing questions intermittently or asking for opinions regularly). Do your best to understand the background, main findings / arguments, and conclusions of each paper — but it’s okay if you don’t understand everything. You can see me in office hours to discuss difficult points before your presentation. You can also bring up challenging aspects of the paper(s) in class, and we can discuss them together. But try your best to figure things out on your own first (you can always Google things you don’t know). Your class presentation is worth 25% of your grade (presentations are graded out of 50 points, as noted above).

Note that this presentation is not meant to be just a series of summaries, or a step through each figure in a paper. You must discuss the article(s) you selected, of course, but this discussion should be in the service of putting together a coherent presentation around the topic for that week. Do not just jump from figure to figure or from paper to paper. Make sure that there is a narrative in your presentation. Think about how to transition from topic to topic to help lead the class through the ‘story’ you want to tell. That means you must make sure to set up the big questions, why that research or that finding is important, what the results mean, and their bigger implications.

With respect to discussion questions in your presentation: go for questions aimed at getting students’ thoughts, opinions, criticisms, concerns, or interpretation of specific issues discussed in the papers. What doesn’t work well is just putting up a figure and asking the class if someone can explain it; that is your job as a presenter. The goal of class discussion is to get other students’ thoughts, feelings, criticisms, and so on, not to ask them to present basic concepts. In other words, it is your job to explain the basic concepts in order to set up discussion questions for the class, and the goal of the discussion questions is to gather opinions, criticisms, and so on. Also, more targeted questions are better at eliciting answers than more vague ones. For example, “What aspect of episodic memory do you think is the hardest to find evidence for in animals? Why?” is better than “Does anyone have any questions?”

Final Paper

At the end of the course, each student must submit a final paper (10-12 pages, 8.5” by 11” paper, 1” margins, 11- or 12-point font, double-spaced, excluding references) summarizing the topic that was of
most interest to them in the class and raising new questions — making sure to talk about the brain as well as behavior. What do we know now, and what do you think we still need to understand? You should feel free to bridge across topics discussed in different weeks. You cannot write a paper that is essentially your presentation in a written format. You must go beyond the content of your presentation.

In your paper, you should be able to describe some findings that interested you (describing them in enough detail for a person to understand if they did not read the article you are talking about; this is worth 10 points), discuss the implications of those findings (this is worth 10 points), and raise problems with those findings and/or outstanding questions for future research (this is worth 10 points). You should then discuss ways of answering those outstanding questions, or specific experiments that could be conducted to test problematic aspects of prior work (this is worth 10 points). To do a good job on this, you must do research beyond the papers discussed in class: find new peer-reviewed articles that touch on the same topic (if you’re stuck, a good place to look is in the references of articles that you read, or use Google Scholar to find articles that cited your article). Because this paper is about a whole area of research, you should read several articles carefully, and make sure to cite them: the expectation is to read and cite at least 10 articles, at least 5 of which must be articles that were not on the syllabus. Clarity of writing is worth an additional 5 points, and reading/citing enough articles (at least 5 new ones) will be worth 5 points. Your final paper is worth 25% of your grade (papers are graded out of 50 points, as noted above). Your final paper is due on Monday, December 12 (by 11:59pm).

To make sure you are on track, you are required to submit one paragraph (~300 words) on Courseworks, describing what you intend to write about, and include at least three new references relevant for your paper, which cannot be from the class readings. This must be handed in no later than Monday, November 14 (by 11:59pm). Not handing this in will result in an automatic 5-point deduction from your final paper.

Note that this is not a freeform paper where you can write about anything related to the brain and/or cognition. You cannot just choose a new topic that we have not discussed in class and review that topic. You must show me that you’ve learned something in this class, thought about it, and can raise new observations or questions. You cannot re-format your presentation as a paper; your paper must be sufficiently distinct from your presentation. Be sure to follow the rubric laid out above.

Additional course notes

Academic integrity

As a member of the academic community, one of your responsibilities is to uphold principles of honesty and integrity. This means that you can only present your own work on assignments and presentations — plagiarism is strictly prohibited, as is presenting work as your own when it was done by someone else. Doing so compromises your academic integrity and potentially your academic standing. This should go without saying, but all of your work, including your oral presentation, must be in your own words. You cannot copy and paste text from articles or book chapters into your presentation or your written assignments. You cannot read from assigned papers for your presentation. Everything you present or write must be in your own words.

If you are falling behind, don’t understand the material, or are not confident about your writing or presentation, talk to me as soon as possible instead of taking measures that go against principles of academic integrity. [Columbia’s Honor Code in Columbia’s Guide to Academic Integrity (http://www.college.columbia.edu/academics/academicintegrity)].
Students with disabilities
If you are a student with special needs and require accommodation, meet me before the first class to discuss your needs. You must also contact Disability Services before the first class to register for specific accommodations (https://health.columbia.edu/disability-services).

COVID-19 policies
To do well in class, you are highly encouraged to do all the readings and assignments, attend all classes, and participate. That said, I recognize that these are not normal times, and all of us are facing challenges that have not been a part of our lives before. For this reason, I will aim to be as helpful and accommodating as possible to your unique situations. If you require accommodations because of COVID-19-related challenges, please e-mail me as soon as you know you need accommodations and explain to me what your needs are so that you can do well.

** Reading list for the class begins on the next page**
September 12 (no thought piece due)

Introduction (and how to find papers online)

Required background reading that will help during the class

Primer on hippocampal anatomy and function

Understanding fMRI multivoxel pattern analysis / decoding / classification techniques:

Overview of the cognitive neuroscience of episodic memory (and more):

Anatomy of the medial temporal lobes (see especially Figures 2 & 3)

weekly readings and topics continue on the next page
Patient studies of episodic memory

Required

Choose **one of**

Optional

weekly readings and topics continue on the next page
September 26

Neuroimaging studies of episodic memory

Required

Choose one of

Optional

Lee H, Chun MM, Kuhl BA. (2016). Lower parietal encoding activation is associated with sharper information and better memory. Cerebral Cortex, 27, 2486-2499.

weekly readings and topics continue on the next page
October 3
Do animals have episodic memory?
Required

Choose one of

Optional

weekly readings and topics continue on the next page
October 10
Place cells: building blocks of memory?

Required

Choose one of

Optional

weekly readings and topics continue on the next page
Divisions of episodic memory

Required

Choose one of

Optional

weekly readings and topics continue on the next page
October 24
Computations of the hippocampus
Required

Choose one of

Optional

weekly readings and topics continue on the next page
October 31
Is the hippocampus fundamentally “spatial”?

Required

Choose one of

Optional

weekly readings and topics continue on the next page
November 14
Organizing memories in time
Required

Choose one of

Optional

weekly readings and topics continue on the next page
November 21
The role of memory systems in perception

Required

Choose one of

Yonelinas AP. (2013). The hippocampus supports high-resolution binding in the service of perception, working memory, and long-term memory. Behavioural Brain Research, 254, 34-44.

Optional

weekly readings and topics continue on the next page
November 28
The role of the hippocampus in imagination

Required

Choose one of

Optional

weekly readings and topics continue on the next page
December 5
How the hippocampus influences, and is influenced by, attention
Required

Choose one of
Cosman JD, Vecera SP. (2013). Learned control over distraction is disrupted in amnesia. Psychological Science, 24, 1585-1590.

Optional

weekly readings and topics continue on the next page
December 12
Implicit memory in “declarative memory” systems

Required

Choose one of

Optional

Reading for when the class is over and you miss it